Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2n-1}{3n-4}\)
=\(\frac{\left(5-3\right)n-\left(5-4\right)n}{3n-4}\)
= \(\frac{5-3n-5n-4}{3n-4}\)
=\(\frac{5}{3n-4}-\frac{3n-4}{3n-4}\)
\(\Rightarrow\)3n - 4 thuộc Ư(5)
Ta có: Ư(5) = { -1;-5;1;5}
Do đó:
3n - 4 = -1
3n = -1 + 4
3n = 3
n = 3 : 3
n = 1
3n - 4 = -5
3n = -5 + 4
3n = -1
n = -1 : 3
n = rỗng
3n - 4 = 1
3n = 1 + 4
3n = 5
n = 5 : 3
n = rỗng
3n - 4 = 5
3n = 5 + 4
3n = 9
n = 9 : 3
n = 3
Vậy n = 1;3
Để \(\frac{2n-1}{3n-4}\)nguyên thì \(2n-1⋮3n-4\)
\(\Leftrightarrow3\left(2n-1\right)⋮3n-4\)
\(\Leftrightarrow6n-3⋮3n-4\)
\(\Leftrightarrow6n-8+5⋮3n-4\)
\(\Leftrightarrow5⋮3n-4\)
\(\Rightarrow3n-4\inƯ\left(5\right)\)
Vậy ta có bảng sau:
3n - 4 | 1 | -1 | 5 | -5 |
n | x | 1 | 3 | x |
\(\frac{3x-1}{3x-4}=\frac{3x-4+1}{3x-4}=\frac{3x-4}{3x-4}+\frac{1}{3x-4}=1+\frac{1}{3x-4}\)
Để phân số nguyên thì 3x-4 là ước của 1 Ư(1) = {-1;1}
+) 3x-4 = -1 => x =1
+) 3x-4 = 1 => 5/3 (loại)
Vậy với x = 1 thì phân số nhận giá trị nguyên
\(\frac{3n-1}{3n-4}=\frac{3n-4}{3n-4}+\frac{3}{3n-4}=1+\frac{3}{3n-4}\)
để \(\frac{3n-1}{3n-4}\)nhận giá trị nguyên thì: \(1+\frac{3}{3n-4}\in Z\Rightarrow3n-4\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
3n-4 | 1 | -1 | 3 | -3 |
n | 5/3(loại) | 1 | 7/3(loai) | 1/3(loai) |
vậy n=1 thì \(\frac{3n-1}{3n-4}\)nhận giá trị nguyên
Ta có: 3n - 1/ 3n -4 = 3n - 4 + 3/ 3n - 4 = 1+ 3/ 3n - 4
Để phân số đó nhận giá trị nguyên thì 3 phải chia hết cho 3n - 4
Suy ra: 3n - 4 thuộc Ư(3) = (1; 3; -1; -3)
Suy ra: 3n thuộc (5; 7 ; 3; 1)
Rồi tiếp tục tính nhé.
Cho một đúng nhé
Để 2n-1/3n-4 nguyên thì 2n-1 chia hết cho 3n-4 suy ra 3{2n-1}cũng chia hết cho 3n-4 suy ra 6n-3 chia hết cho 3n-4 suy ra 6n-8+5 chia hết cho 3n-4 suy ra 5 chia hết cho 3n-4 suy ra 3n-4 thuộc ước của 5 suy ra 3n-4 thuộc {-5;-1;1;5} suy ra n thuộc {1;3}
Hông chắc nha
- Để \(\frac{12}{3n-1}\)là số nguyên \(\Rightarrow\)\(12⋮ 3n-1\)
\(\Rightarrow\)\(3n-1\inƯ\left(12\right)\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
- Ta có bảng giá trị:
\(3n-1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-3\) | \(3\) | \(-4\) | \(4\) | \(-6\) | \(6\) | \(-12\) | \(12\) |
\(n\) | \(0\) | \(\frac{2}{3}\) | \(-\frac{1}{3}\) | \(1\) | \(-\frac{2}{3}\) | \(\frac{4}{3}\) | \(-1\) | \(\frac{5}{3}\) | \(-\frac{5}{3}\) | \(\frac{7}{3}\) | \(-\frac{11}{3}\) | \(\frac{13}{3}\) |
\(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(TM\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(L\right)\) | \(\left(L\right)\) |
Vậy \(n\in\left\{-1; 0; 1\right\}\)
!!@@# ^_^ Chúc bạn hok tốt ^_^#@@!!
a) Để 3 n − 3 là số nguyên thì 3 chia hết cho (n - 3) hay (n-3) ÎƯ(3)
=> ( n – 3) Î{-3;-1;1;3} => n Î{-6;-4;-2;0}
b) ( n – 1) ÎƯ (3) = {-3;-1;1;3} => n Î{-2;0;2;4}
c) (3n +1) ÎƯ (4) {-4;-2;-1;1;2;4}
Vì n Î Z nên sau khi tính ta thu được nÎ{-1; 1}
\(a,\frac{3n-2}{n+1}=\frac{3n+3-5}{n+1}=\frac{3\left(n+1\right)-5}{n+1}\)
\(=3-\frac{5}{n+1}\)
\(\text{Để }\frac{3n-2}{n+1}\in Z\)
\(\Rightarrow3-\frac{5}{n+1}\in Z\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n=\left\{0;4;-2;-6\right\}\)
\(=\frac{3n-2+6}{3n-2}=\frac{3n-2}{3n-2}+\frac{6}{3n-2}\)
\(\Rightarrow\)3n-2\(\in\) Ư(6)
3n-2=-1
3n=-1+2
3n=1 loại
3n-2=1
3n=1+2
3n=3
n=1 chọn
bạn tự làm tiếp nhé