Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt n2 + 3 = k2 ( k ∈ N )
=> k2 - n2 - 3 = 0
=> k2 - n2 = 3
=> ( k - n )( k + n ) = 3
Xét các trường hợp :
1. \(\hept{\begin{cases}k-n=1\\k+n=3\end{cases}}\Rightarrow\hept{\begin{cases}k=1\\n=1\end{cases}\left(tm\right)}\)
2. \(\hept{\begin{cases}k-n=-1\\k+n=-3\end{cases}}\Rightarrow\hept{\begin{cases}k=-2\\n=-1\end{cases}\left(ktm\right)}\)
3. \(\hept{\begin{cases}k-n=3\\k+n=1\end{cases}}\Rightarrow\hept{\begin{cases}k=2\\n=-1\end{cases}\left(tm\right)}\)
4. \(\hept{\begin{cases}k-n=-3\\k+n=-1\end{cases}}\Rightarrow\hept{\begin{cases}k=-2\\n=1\end{cases}\left(ktm\right)}\)
Vậy với n ∈ { -1 ; 1 } thì n2 + 3 là một số chính phương
Ta thấy: \(4n^2+14n+7=\left(n+3\right)\left(4n+2\right)+1\)
Do n là số nguyên dương \(\Rightarrow4n^2+14n+7\)và n+3 nguyên tố cùng nhau
\(\Rightarrow\left(n+3\right)\left(4n^2+14n+7\right)\)là 1 SCP thì n+3 và \(4n^2+14n+7\)là 1 số chính phương
Do n nguyên dương \(\Rightarrow\left(2n+3\right)^2\le4n^2+14n+7< \left(2n+4\right)^2\)\(\Rightarrow4n^2+14n+7=\left(2n+3\right)^2\Leftrightarrow n=1\)khi đó n+3=4 là 1 scp
Thử lại với n=1 \(\left(n+3\right)\left(4n^2+14n+7\right)=100\left(tm\right)\)
Vậy n=1
Có \(A=n^2\left(n^2+n+1\right)\)
Để A là scp \(\Leftrightarrow n^2+n+1\) là scp
Đặt \(a^2=n^2+n+1\) (\(a\in Z\))
\(\Leftrightarrow4a^2=4n^2+4n+4\)
\(\Leftrightarrow4a^2=\left(2n+1\right)^2+3\)
\(\Leftrightarrow\left(2a-2n-1\right)\left(2a+2n+1\right)=3\)
Do \(a,n\in Z\Rightarrow2a-2n-1;2a+2n+1\) \(\in Z\)
\(\Rightarrow\left\{{}\begin{matrix}2a-2n-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\2a+2n+1\inƯ\left(3\right)\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}2a-2n-1=-3\\2a+2n+1=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}4a=-4\\2a+2n+1=-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a=-1\\n=0\end{matrix}\right.\) (tm)
TH2:\(\left\{{}\begin{matrix}2a-2n-1=-1\\2a+2n+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=-4\\2a+2n+1=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\n=-1\end{matrix}\right.\) (tm)
TH3:\(\left\{{}\begin{matrix}2a-2n-1=1\\2a+2n+1=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=4\\2a+2n+1=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\n=0\end{matrix}\right.\) (tm)
TH4:\(\left\{{}\begin{matrix}2a-2n-1=3\\2a+2n+1=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4a=4\\2a+2n+1=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\n=-1\end{matrix}\right.\) (tm)
Vậy n=0 và n=-1 thì A là scp