Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:A=\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=3+\frac{5}{n-1}\)
Để A nguyên thì \(\frac{5}{n-1}\in Z\Rightarrow n-1\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Rightarrow n\in\left\{-4,0,2,6\right\}\)
Vậy............
Ta có : A= (3n+2)/(n-1)
= [3.( n-1)+5]/(n-1)
=3+[5/(n-1)]
Để A nguyên thì 5 phải chia hết cho n-1
=> n-1 thuộc ước của 5
Ta có bảng sau
x-1 | 1 | -1 | 5 | -5 |
---|---|---|---|---|
x | 2 | 0 | 6 | -4 |
Vậy x\(\in\){ -4 ; 0 ; 2 ; 6 }
1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................
ta co : 3n+2 /n -1
=(3n - 3 + 5)/ (n-1)
=3(n-1) + 5 / (n-1)
=3(n-1)/ (n-1) + 5/(n-1)
=3 + 5/(n-1)
De 3n+2 chia het cho n-1
<=>n-1 thuộc Ư(5)={+-1;+-5}
=>n={2;0;6;-4}
bạn an ơi vì sao (3n-3+5) khi bỏ dấu ngoặc ra lại bàng 3(n-1) +5 vậy?
1) Tìm x
a) |3x - 1| + |1 - 3x| = 6
<=> |3x - 1| + |3x - 1| = 6
<=> 2|3x - 1| = 6
=> |3x - 1| = 3
=> \(\orbr{\begin{cases}3x-1=3\\3x-1=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{2}{3}\end{cases}}}\)
b) |2x - 1| + |1 - 2x| = 8
<=> |2x - 1| + |2x - 1| = 8
<=> 2|2x - 1| = 8
=> |2x - 1| = 4
=> \(\orbr{\begin{cases}2x-1=4\\2x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}}\)
Ta có: \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n=\left\{2;0;6;-4\right\}\)
a) A = \(\frac{3n+9}{n-4}\)= \(\frac{3\left(n-4\right)+21}{n-4}\)= 3 + \(\frac{21}{n-4}\)
Để A là số nguyên , n-4 phải là ước của 21. Ta được :
n-4 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -17 | -3 | 1 | 3 | 5 | 7 | 11 | 25 |
A | 2 | 0 | -4 | -18 | 24 | 10 | 6 | 4 |
b) Biến đổi : B = 3 + \(\frac{8}{2n-1}\)
2n-1 là ước lẻ của 8 .
Đáp số :
n | 1 | 0 |
B | 11 | -5 |
Câu 1:
Để A nguyên
=> 3n + 2 chia hết cho n - 1
=> 3n - 3 + 5 chia hết cho n - 1
Có 3n - 3 chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5)
=> n - 1 thuộc {1; -1; 5; -5}
=> n thuộc {2; 0; 6; -4}
Câu 2:
\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}\)
\(=2^{18}\left(2^3-1\right)=2^{18}.7\)
\(=2^{16}.2^2.7\)
\(=2^{16}.14\)chia hết cho 14
=> \(8^7-2^{18}\text{ chia hết cho }14\)(Đpcm)
\(B=\frac{3n+1}{n+1}=\frac{3n+3}{n+1}-\frac{2}{n+1}=3-\frac{2}{n+1}\)
B nguyên khi \(\frac{2}{n+1}\) nguyên <=> 2 chia hết cho n+1 <=>n+1 thuộc Ư(2)={-2;-1;1;2}
<=>n thuộc {-3;-2;0;1}
\(B=\frac{3n+1}{n+1}=\frac{3\left(n+1\right)-2}{n+1}=3-\frac{2}{n+1}\)
B nguyên <=> \(\frac{2}{n+1}\)nguyên
<=> \(2⋮n+1\)<=> \(n+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
n+1 | -2 | -1 | 1 | 2 |
n | -3 | -2 | 0 | 1 |
Vì A nguyên nên 3n + 2 chia hết cho n - 1 => 3n - 3 + 5 chia hết cho n - 1 => 5 chia hết cho n - 1 => n - 1 thuộc Ư(5) = { -1 ; 1 ; -5 ; 5 }
=> n thuộc { 0 ; 2 ; -; 6 }
Vậy n thuộc { 0 ; 2 ; -; 6 } thoản mãn đề bài.
A=3n+2/n-1=3+5/n-1
để a có gia trị nguyên thì 3+5/n-1 có giá trị nguyên mà 3 lầ số nguyên thi 5/n-1 có giá trị nguyên nên
n-1 thuộc ư(5)={1;-1;5;-5} nên n thuoocj tập hợp {2;0;6;-4}