K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

3n + 5 ⋮ 2n + 1

(3n + 5).2 ⋮ 2n + 1

6n + 10 ⋮ 2n + 1

 3.(2n + 1) + 7 ⋮ 2n + 1

   2n + 1 \(\in\) Ư(7) = {-7; -1; 1; 7}

Lập bảng ta có:

2n+1 -7 -1 1 7
n -4 -1 0

3

 

Theo bảng trên ta có 

\(\in\) {-4; -1; 0; 3}

 

8 tháng 1 2017

( 2n + 5 ) : n + 1

<=> 2n + 2 + 3 : n+ 1

2.( n+ 1)  + 3 : n+ 1

mà 2 ( n+ 1 ) : n + 1

=> 3 : n+ 1

n + 1 thuộc ước (3 ) ={ +-1 ; + -3 }

n+1-11-33
n-20-42

vậy n { -4; -2 ; -0 ; 2 }

b, ( 3n+ 1 : n-1

<=> 3n -3 + 4 : n-1

3 .( n-1 ) +4 : n-1

mà 3 ( n-1 ) : n-1

=> 4 : n-1

( tương tự như trên nha )

c,  n+ 5 : 2n + 1

<=>   2n + 10 : 2n + 1

( 2n + 1 ) + 9 : 2n + 1

mà 2n + 1 : 2n + 1

=> 9 : 2n + 1

( tương tự như trên)

8 tháng 1 2017

Bài 1

Ta có :

(2n + 5) \(⋮\)(n + 1 ) => (2n + 2) + 3 \(⋮\)(n + 1)

=> 3 \(⋮\)(n + 1) => n + 1 \(\in\)Ư(3) => n + 1\(\in\){1 ; -1 ; 3 ; -3}

 - Với n + 1 = 1 => n = 0

 - Với n + 1 = -1 => n = -2

 - Với n + 1 = 3 => n = 2

 - Với n + 1 = -3 => n = -4

Bài 2 

Ta có :

(3n + 1) \(⋮\)(n - 1) => (3n - 3) + 4 \(⋮\)(n - 1)

=> 4 \(⋮\)(n - 1) => n - 1 \(\in\)Ư(4) => n - 1 \(\in\) {1 ; -1 ; 2 ; -2 ; 4 ; -4}

 - Với n - 1 = 1 => n = 2

 - Với n - 1 = -1 => n = 0

 - Với n - 1 = 2 => n = 3

 - Với n - 1 = -2 => n = -1

 - Với n - 1 = 4 => n = 5

 - Với n - 1 = -4 => n = -3

Bài 3 thì mình bó tay

19 tháng 12 2020

\(3n-3+5⋮n-1\)

\(\Leftrightarrow3\left(n-1\right)+5⋮n-1\)

có 3(n-1) chia hết cho n-1

\(\Rightarrow5⋮n-1\)

=> n-1 thuộc ước của 5

tức là:

n-1=5

n-1=-5

n-1=1

n-1=-1

19 tháng 12 2020

đến đấy mà không làm được thì a chịu đấy =)))))

5 tháng 11 2018

a) Ta có : 4n + 3 = 2(2n - 1) +5

Do 2n - 1 \(⋮\)2n - 1 nên 2(2n - 1) \(⋮\)2n - 1

Để 4n + 3 \(⋮\)2n - 1 thì 5 \(⋮\)2n - 1 => 2n - 1 \(\in\)Ư(5) = {1; 5}

Lập bảng :

2n - 1 1 5
  n 1 3

Vậy n = {5; 3} thì 4n + 3 chia hết cho 2n - 1

5 tháng 11 2018

c) Ta có : n + 3 = (n - 1) + 4

Để (n - 1) + 4 \(⋮\)n - 1 thì 4 \(⋮\)n - 1 => n - 1 \(\in\)Ư(4) = {1; 2; 4}

Lập bảng :

 n - 1 1  2   4
   n 2 3 5

Vậy n = {2; 3; 5} thì n + 3 \(⋮\)n - 1

18 tháng 12 2023

(3n - 1) ⋮ (2n - 1)

⇒ 2(3n - 1) ⋮ (2n - 1)

⇒ (6n - 2) ⋮ (2n - 1)

⇒ (6n - 3 + 1) ⋮ (2n - 1)

⇒ [3(2n - 1) + 1] ⋮ (2n - 1)

⇒ 1 ⋮ (2n - 1)

⇒ 2n - 1 ∈ Ư(1) = {-1; 1}

⇒ 2n ∈ {0; 2}

⇒ n ∈ {0; 1}

18 tháng 12 2023

3n - 1 ⋮ 2n - 1 

2(3n-1) ⋮ 2n-1 

3(2n-1)+1⋮ (2n-1)

1 ⋮ (2n-1) 

(2n- 1 ) \(\in\) \(\)Ư(1) = \(\left\{-1;1\right\}\) 

2n-1 -1 1
n 0  1

Theo bảng trên ta có 

n ϵ { 0:1}

 

 

 

 

 

DD
24 tháng 5 2021

\(7⋮\left(2n-3\right)\Leftrightarrow2n-3\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)

\(\Leftrightarrow2n\in\left\{-4,2,4,10\right\}\Leftrightarrow n\in\left\{-2,1,2,5\right\}\).

12 tháng 12 2018

\(3n+2⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

\(\Rightarrow5⋮n-1\)

\(\Rightarrow n-1\in\left\{1,5,-1,-5\right\}\)

\(\Rightarrow n\in\left\{2,6,0,-4\right\}\)

12 tháng 12 2018

\(2n-3⋮n+1\)

\(\Rightarrow2\left(n+1\right)-6⋮n+1\)

\(\Rightarrow6⋮n+1\)

\(\Rightarrow n+1\in\left\{6,1,2,3,-1,-6,-2,-3\right\}\)

\(\Rightarrow n\in\left\{5,0,1,2,-2,-7,-3,-4\right\}\)

I don't care

26 tháng 2 2017

Mình đang cần gấp !

7 tháng 2 2018

a) Ta có :

\(n+1=n-2+3\)chia hết cho \(n-2\)\(\Rightarrow\)\(3\)chia hết cho \(n-2\)\(\Rightarrow\)\(\left(n-2\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Do đó :

\(n-2=1\Rightarrow n=1+2=3\)

\(n-2=-1\Rightarrow n=-1+2=1\)

\(n-2=3\Rightarrow n=3+2=5\)

\(n-2=-3\Rightarrow n=-3+2=-1\)

Vậy \(n\in\left\{3;1;5;-1\right\}\)

7 tháng 2 2018

a, n + 1 chia hết cho n - 2

\(\Rightarrow n-2+3\) chia hết cho \(n-2\)

\(\Rightarrow\) 3 chia hết cho n - 2

\(\Rightarrow n-2\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n-2\in\left\{\pm1;\pm3\right\}\)

\(\Rightarrow n\in\left\{3;1;5;-1\right\}\)