Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{7n-8}{2n-3}\), ta có:
\(A=\frac{7n-8}{2n-3}\)
\(\Rightarrow2A=2\left(\frac{7n-8}{2n-3}\right)\)
\(\Rightarrow2A=\frac{14n-16}{2n-3}\)
\(\Rightarrow2A=\frac{7\left(2n-3\right)+5}{2n-3}\)
\(\Rightarrow2A=\frac{7\left(2n-3\right)}{2n-3}+\frac{5}{2n-3}=7+\frac{5}{2n-3}\)
Để \(A\) đạt GTLN thì \(2A\) phải đạt GTLN
\(\Rightarrow\frac{5}{2n-3}\) đạt GTLN
\(\Rightarrow2n-3\) là số nguyên dương nhỏ nhất.
- \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)
Vậy phân số \(\frac{7n-8}{2n-3}\) đạt GTLN là 6 tại \(n=2\).
\(n^{150}=\left(n^2\right)^{75};5^{225}=\left(5^3\right)^{75}=125^{75}\)
\(n^{150}< 5^{225}\) hay \(\left(n^2\right)^{75}< 125^{75}\)
=> \(n^2< 125\)
Nên: Số nguyên lớn nhất thỏa mãn điều kiện trên là n=11
Ta có: n^150 < 5^225
<=> n^2^75< 5^3^75
<=> n^2 < 5^3= 125
<=> n^2 ≤ 121
<=>n ≤11
mà n lớn nhất nên n=11
Vậy n=11
Ta có : \(n^{150}< 5^{225}\)
\(\Rightarrow\left(n^2\right)^{75}< \left(5^3\right)^{75}\)
=> n2 < 125
=> n2 = {1;4;9;16;25;36;49;64;81;100}
=> n = {1;2;3;4;5;6;7;8;9;10}
Vì n là lớn nhất
Nên n = 10
Vậy n = 10
ta có:
\(n^{150}=\left(n^6\right)^{25};5^{225}=\left(5^9\right)^{25}\)
\(\Rightarrow n^6< 5^9\)
\(max\left(n\right)=11\)
\(n^{150}< 5^{225}\)
\(\Leftrightarrow\left(n^{30}\right)^5< \left(5^{45}\right)^5\)
\(\Leftrightarrow n^{30}< 5^{45}\)
\(\Leftrightarrow\left(n^{10}\right)^3< \left(5^{15}\right)^3\)
\(\Rightarrow n^{10}< 5^{15}\)
\(\Leftrightarrow\left(n^2\right)^5< \left(5^3\right)^5\)
\(\Rightarrow n^2< 125\)
\(MAX_n\Rightarrow MAX_{n^2}\)
\(\Rightarrow n^2=121\Rightarrow n=11\)
1) \(P=\frac{2}{6-m}\left(m\ne6\right)\)
Để P có GTLN thì 6-m đạt giá trị nhỏ nhất
=> 6-m=1
=> m=5 (tmđk)
Vậy m=5 thì P đạt giá trị lớn nhất
\(n^{150}< 5^{225}\)
\(\Rightarrow n^{150}=\left(n^2\right)^{75}\)
\(\Leftrightarrow\left(n^2\right)^{75}< \left(5^3\right)^{75}\)
\(\Rightarrow n^2< 125\)
\(\Rightarrow n< 12\)
\(\left|x-3,5\right|+\left|4,5-x\right|=0\)
\(\Rightarrow\left|x-3,5\right|=\left|4,5-x\right|\)
\(\Rightarrow x-3,5=4,5-x\)
\(\Rightarrow x+x=4,5+3,5\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
n150 = (n2)75 ; 5225 = (53)75 = 12575
n150 < 5225 hay (n2)75 < 12575. Suy ra n2 < 125.
Ta có: 102 = 100; 112 = 121; 122 = 144
Số nguyên lớn nhất thoả mãn điều kiện trên là n = 11.