K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:

\(27^n:3^n=9\)

\(=>\left(27:3\right)^n=9\)

\(=>9^n=9\)

\(=>n=1\)

hoặc:\(n:n=1\)

\(27:9:1=3\)

17 tháng 7 2018

Ta có:

\(27^n:3^n=9\)

Vì \(27:3=9\)

\(\Leftrightarrow n=1\)

27 tháng 7 2023

Bài 6 :

a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)

b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)

c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)

d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)

27 tháng 7 2023

Bài 7 :

a) \(3^x+3^{x+2}=9^{17}+27^{12}\)

\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)

\(\Rightarrow10.3^x=3^{34}+3^{36}\)

\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)

\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)

b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)

\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)

\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)

c) Bài C bạn xem lại đề

d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)

\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)

\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)

\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)

\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)

\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)

6 tháng 9 2017

a) 2.16 \(\ge\) 2n > 4

32 \(\ge\) 2n > 4

=> n = 3,4 . Tương đương với 2n = 23 ; 2n = 24

b) 9.27 \(\le\) 3n \(\le\) 243

243 \(\le\) 3n \(\le\) 243

=> 3n = 243 = 35 . Tương đương với 3n=35 , vậy n = 5

23 tháng 9 2016

a) \(\frac{16}{2^n}=2\)

=> 2.2n = 16

=> 21+n = 24

=> 1 + n = 4

=> n = 4 - 1

=> n = 3

Vậy n = 3

b) \(\frac{\left(-3\right)^n}{81}=-27\)

=> (-3)n = -27.81

=> (-3)n = -33.34

=> (-3)n = (-3)7

=> n = 7

Vậy n = 7

c) 8n : 2n = 4

=> (8 : 2)n = 4

=> 4n = 41

=> n = 1

Vậy n = 1

18 tháng 8 2020

Sửa đề : \(\left(-\frac{4}{3}\right)^n.\left(\frac{16}{9}\right)^2=\left(-\frac{64}{27}\right)^2\)

=> \(\left(-\frac{4}{3}\right)^n.\left[\left(-\frac{4}{3}\right)^2\right]^2=\left[\left(-\frac{4}{3}\right)^3\right]^2\)

=> \(\left(-\frac{4}{3}\right)^n.\left(-\frac{4}{3}\right)^4=\left(-\frac{4}{3}\right)^6\)

=> \(\left(-\frac{4}{3}\right)^n=\left(-\frac{4}{3}\right)^2\)

=> n = 2

a: \(\Leftrightarrow2^5\ge2^n>2^2\)

=>2<n<=5

hay \(n\in\left\{3;4;5\right\}\)

b: \(\Leftrightarrow3^2\cdot3^3\le3^n\le3^5\)

=>5<=n<=5

=>n=5

14 tháng 9 2017

a,

\(2^{27}=\left(2^3\right)^9=8^9\)

\(3^{18}=\left(3^2\right)^9=9^9\)

b,

\(8^9< 9^9\) nên \(2^{27}< 3^{18}\)