Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: n2-7=n2-9+2=n2-32+2=(n+3)(n-3)+2
=>(n+3)(n-3)+2\(⋮\)n+3
=>2\(⋮\)n+3
=>n+3\(\in\){-2; -1; 1; 2}
=>n\(\in\){-5; -4; -2; -1}
Vậy............
đợi mk nghĩ phần b !
a)2n-7=2(n+3)-13 Mà 2(n+3) là bội của n+3 =>n+3 thuộc B(13) =>n+3=1:13 Ta có bảng sau:
n+3 | 1 | 13 |
n | -2 | 10 |
vậy...
1)
a)
Gọi 3 STN liên tiếp là a;a+1;a+2
Ta có:a+(a+1)+(a+2)
=3a+3
=3(a+1) chia hết cho 3
=>ĐPCM
2)
a)3n chia hết cho n-1
Ta có 3n=3n-3+3
=3(n-1)+3
Vì 3(n-1) chia hết cho (n-1)
Để [3(n-1)+3] chia hết cho (n-1)<=>3 chia hết cho (n-1)<=> (n-1) thuộc Ư(3)
Ta có Ư(3)={1;3;-1;-3}
+n-1=-3=>n=-2
+n-1=-1=>n=0
+n-1=1=>n=2
+n-1=3=>n=4
Vậy n thuộc{0;2;-2;4} thì 3n chia hết cho (n-1)
Những câu dưới tương tự
*Mình chỉ làm mẫu vài bài thôi nhé!! Chứ mình lười lắm!!* 😊
1)
a,
Gọi 3 số nguyên liên tiếp là k;k+1;k+2(k thuộc Z)
Tổng của 3 số nguyên đó là:
k+(k+1)+(k+2)=k+k+1+k+2=3k+3=3(k+1)
Mà 3(k+1) chia hết cho 3 => (đpcm)
2)
a, 3n chia hết cho n-1
=> (3n-3)+3 chia hết cho n-1
=> [3(n-1)]+3 chia hết cho n-1
Vì n-1 chia hết cho n-1
Nên 3(n-1) chia hết cho n-1
=> 3 chia hết cho n-1
Hay n-1 thuộc Ư(3)={1;-1;3;-3}
Do đó: n thuộc {2;0;4;-2}
b, Để 2n+7 là bội của n-3 thì:
2n+7 chia hết cho n-3
=> (2n-6)+13 chia hết cho n-3
=> [2(n-3)]+13 chia hết cho n-3
Vì n-3 chia hết cho n-3
Nên 2(n-3) chia hết cho n-3
=> 13 chia hết cho n-3
Hay n-3 thuộc Ư(13)={1;-1;13;-13}
Do đó: n thuộc {4;2;16;-10}
c, Để n+2 là ước của 5n-1 thì:
5n-1 chia hết cho n+2
=> (5n+10)-11 chia hết cho n+2
=> [5(n+2)]-11 chia hết cho n+2
Vì n+2 chia hết cho n+2
Nên 5(n+2) chia hết cho n+2
=> 11 chia hết cho n+2
Hay n+2 thuộc Ư(11)={1;-1;11;-11}
Do đó: n thuộc {-1;-3;9;-13}
3) Gọi 2 số nguyên cần tìm là x và y(x,y thuộc Z)
Theo đề, ta có:
xy=x-y => xy-(x-y)=0 => xy-x+y=0
=> x(y-1)+y=0 => x(y-1)+y-1=-1
=> (x+1)(y-1)=-1
Mặt khác: -1=(-1).1=1.(-1)
~Rồi bạn xét hai trường hợp nhé!!
*Đúng nhớ tk giúp 😊*
a) – 13 là bội của n – 2
=>n−2∈Ư (−13)={1; −1;13; −13}
=> n∈{3;1;15; −11}
Vậy n∈{3;1;15; −11}.
b) 3n + 2 ⋮2n−1 => 2(3n + 2) ⋮2n−1 => 6n + 4 ⋮2n−1 (1)
Mà 2n−1⋮2n−1 => 3(2n−1) ⋮2n−1 => 6n – 3 ⋮2n−1 (2)
Từ (1) và (2) => (6n + 4) – (6n – 3) ⋮2n−1
=> 7 ⋮2n−1
=> 2n−1 ∈Ư(7)={1; −1;7; −7}
=>2n ∈{2;0;8; −6}
=>n ∈{1;0;4; −3}
Vậy n ∈{1;0;4; −3}.
c) n2 + 2n – 7 ⋮n+2
=>n(n+2)−7⋮n+2
=>7⋮n+2=>n+2∈{1; −1;7; −7}
=>n∈{−1; −3;5; −9}
Vậy n∈{−1; −3;5; −9}
d) n2+3n−5 là bội của n−2
=> n2+3n−5 ⋮ n−2
=> n2−2n+5n−10+5 ⋮ n−2
=> n(n - 2) + 5(n - 2) + 5 ⋮ n−2
=> 5 ⋮ n−2=>n−2∈{1; −1;5; −5}=>n∈{3; 1;7; −3}
Vậy n∈{3; 1;7; −3}.