Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{2n^2+3n+3}{2n-1}\), ta có :
\(A=\frac{2n^2+3n+3}{2n-1}=\frac{n\left(2n-1\right)+2n-1+4}{2n-1}==n+1+\frac{4}{2n-1}\)
Vì A nguyên nên \(\frac{4}{2n-1}\in Z\)
\(\Rightarrow2n-1\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow2n\in\left\{-3;-1;0;2;3;5\right\}\)
Vì n nguyên
\(\Rightarrow2n\in\left\{0;2\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Để \(\frac{2n^2+3n+3}{2n-1}\in Z\)
=> \(2n^2+3n+3⋮2n-1\)
=> \(4n^2+6n+6⋮\left(2n-1\right)\)
=> \(\left(4n^2-1\right)+\left(6n-3\right)+10⋮\left(2n-1\right)\)
Do \(4n^2-1=\left(2n-1\right)\left(2n+1\right)⋮\left(2n+1\right);6n-3=3\left(2n-1\right)⋮\left(2n-1\right)\)
=> \(10⋮\left(2n-1\right)\)
=> 2n-1 là ước của 10 \(\in\pm1;2;5;10\)và do 2n-1 là số lẻ => 2n-1 \(\in\pm1;5\)
=> n = ......
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)
A = \((2n)^{3} - 3n + 1 \)
\(\Leftrightarrow\) A = \((2n)^{3} - 2n - n + 1\)
\(\Leftrightarrow\) A = \(2n (n^{2} - 1) - ( n-1)\)
\(\Leftrightarrow\) A = \(2n(n - 1)(n+1)-(n-1)\)
\(\Leftrightarrow\) A = \((2n^{2} +2n-1)(n-1)\)
Vì A là số nguyên tố nên n - 1 = 1
\(\Rightarrow\) n = 2
\(-2n+9\) là số nguyên tố
\(\Rightarrow\)\(-2n+9>0\)
\(\Rightarrow\)\(2n< 9\)
\(\Rightarrow\)\(n< 4,5\)
do \(n\in N\) \(\Rightarrow\)\(n=\left\{1,2,3,4\right\}\)
Với \(n=1\)\(\Rightarrow\)\(2n+1=3\) ko phải số chính phương (loại)
Với \(n=2\)\(\Rightarrow\)\(2n+1=5\)ko phải số chính phương (loại)
Với \(n=3\)\(\Rightarrow\)\(3n+1=10\)ko phải số chính phương (loại)
Với \(n=4\) \(\Rightarrow\)\(3n+1=13\)ko phải số chính phương (loại)
Vậy ko tìm đc \(x\in N\)thỏa mãn: 2n+1; 3n+1 là số chính phương và -2n+9 là số nguyên tố
A = (2n)^3−3n+1
⇔ A = (2n)^3−2n−n+1
⇔ A = 2n(n^2−1)−(n−1)
⇔ A = 2n(n−1)(n+1)−(n−1)
⇔ A = (2n^2+2n−1)(n−1)
Vì A là số nguyên tố nên n - 1 = 1
⇒ n = 2
ta có tử = \(2n^2+n+2n+1+59=n\left(2n+1\right)+\left(2n+1\right)+59=\left(n+1\right)\left(2n+1\right)+59\)
mà để P là số nguyên <=> \(59⋮2n+1\)
đến chỗ này lập bảng nhé