Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(n+4\right)^2-4\left(4n-25\right)=n^2+8n+16-16n+100=n^2-8n+116>0\)
Vì hệ số của x2 là 1 nên để PT có nghiệm nguyên thì \(n^2-8n+116\) là số chính phương.
Giả sử \(n^2-8n+116=a^2\Rightarrow a^2-\left(n-4\right)^2=100\Rightarrow\left(a-n+4\right)\left(a+n-4\right)=100\)
Xét các ước của 100 và chú ý: a + n - 4 > a - n + 4. Từ đó tìm ra n.
2, 5a+b+3c/a-b+c>1 <=> a-b+c+4a+2b+2c/a-b+c>1
<=>4a+2b+2c/a-b+c > 0 (1)
xét P(2)=4a+2b+c>0,P(-1)=a-b+c>0 (do P(x)>0 với mọi x)
=>P(2)/P(-1)>0 => (1) đúng =>đpcm
3, hóng cao nhân
-đề chuyên LQĐ
1,Bổ đề : (a^2+b^2+c^2)(a+b+c) >= 3(a^2b+b^2c+c^2a) (nhân bung rồi Cauchy từng cặp 2 số)
từ đó P <= (a+b+c)/3-(a+b+c)^2/9=x/3-x^2/9 (với x=a+b+c>0)=x/3-(x/3)^2=t-t^2(với t=a+b+c>0)=t(1-t)<=(t+1-t)^2/4=1/4
maxP=1/4,đạt tại a=b=c=1/2