Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{9n+3}{3n+1}=\frac{3\cdot\left(3n+1\right)}{3n+1}=3\forall n\in Z\)
\(\frac{9n+3}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}\in Z\) nên với mọi số nguyên n thì \(\frac{9n+3}{3n+1}\in Z\)
Để \(\frac{4n+3}{3n+1}\) thuộc Z thì 4n + 3 chia hết cho 3n + 1
\(\Rightarrow3\left(4n+3\right)⋮3n+1\)
\(\Rightarrow12n+9⋮3n+1\)
\(\Rightarrow\left(12n+4\right)+5⋮3n+1\)
\(\Rightarrow4\left(3n+1\right)+5⋮3n+1\)
\(\Rightarrow5⋮3n+1\)
\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)
+) 3n + 1 = 1\(\Rightarrow n=0\) ( chọn )
+) \(3n+1=-1\Rightarrow n=\frac{-2}{3}\) ( loại )
+) \(3n+1=5\Rightarrow n=\frac{4}{3}\) ( loại )
+) \(3n+1=-5\Rightarrow n=-2\)
Vậy n = 0 hoặc n = -2
Đề A đạt giá trị nguyên
=> 3n + 9 chia hết cho n - 4
3n - 12 + 12 + 9 chia hết cho n - 4
3.(n - 4) + 2c1 chia hết cho n - 4
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư(21) = {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
Thay n - 4 vào các giá trị trên như
n - 4 = 1
n - 4 = -1
.......
Ta tìm được các giá trị :
n = {5 ; 3 ; 7 ; -1 ; 11 ; -3 ; 25 ; -17}
a) Để A thuộc Z (A nguyên)
=> 3n+9 chia hết cho n-4
hay 3n+9-12+12 chia hết cho n-4 (-12+12=0)
3n-12+9+12 chia hết cho n-4
3n-12+21 chia hết cho n-4
3(n-4)+21 chia hết cho n-4
Vì 3(n-4) luôn chia hết cho n-4 với mọi n thuộc Z=> 21 chia hết cho n-4
mà Ư(21)={21;1;7;3} nên ta có bảng:
n-4 | 21 | 1 | 3 | 7 |
n | 25 (tm) | 5 (tm) | 7 (tm) | 11 (tm) |
Vậy n={25;5;7;11} thì A nguyên.
b)
Để B thuộc Z (B nguyên)
=> 6n+5 chia hết cho 2n-1
hay 6n+5-3+3 chia hết cho 2n-1 (-3+3=0)
6n-3+5+3 chia hết cho 2n-1
6n-3+8 chia hết cho 2n-1
3(2n-1)+8 chia hết cho 2n-1
Vì 3(2n-1) luôn chia hết cho 2n-1 với mọi n thuộc Z=> 8 chia hết cho 2n-1
mà Ư(8)={8;1;2;4} nên ta có bảng:
2n-1 | 8 | 1 | 2 | 4 |
n | 4.5 (ktm) | 1 (tm) | 1.5 (ktm) | 2.5 (ktm) |
Vậy, n=1 thì B nguyên.
a,
=>3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1=-5;-1;1;5
=>n=-4;0;2;6
b,3n.1=3n
=>3n+1 chia hết cho 3n
=>1 chia hết cho 3n(vô lí)
vậy không có n
Gọi ƯCLN(9n+24; 3n+4) là d. Ta có:
9n+24 chia hết cho d
3n+4 chia hết cho d => 9n+12 chia hết cho d
=> 9n+24-(9n+12) chia hết cho d
=> 12 chia hết cho d
=> d thuộc Ư(12)
=> d thuộc {1; -1; 3; -3; 4; -4; 12; -12}
Giả sử ƯCLN(9n+24; 3n+4) khác 1
=> 3n+4 chia hết cho 4
=> 3n+4-4 chia hết cho 4
=> 3n chia hết cho 4
=> nchia hết cho 4
=> n = 4k
=> Để ƯCLN(9n+24; 3n+4) = 1 thì n \(\ne\) 4k
a,
\(P=\frac{3n-4}{n+2}\) là phân số
<=> n + 2 khác 0
<=> n khác -2
b,
\(P=\frac{3n-4}{n+2}\inℤ\Leftrightarrow3n-4⋮n+2\)
=> 3n + 6 - 10 ⋮ n + 2
=> 3(n + 2) - 10 ⋮ n + 2
3(n + 2) ⋮ n + 2
=> 10 ⋮ n + 2
=> n + 2 thuộc Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}
=> n thuộc {-3; -1; -4; 0; -7; 3; -12; 8}
vậy_
Giải :
a) Để P là phần số thì \(n+2\ne2\) \(\Rightarrow n\ne-2\)
b) Ta có : \(\frac{3n-4}{n+2}=\frac{3.\left(n+2\right)-10}{n+2}=3-\frac{10}{n+2}\)
Để P \(\in\)Z thì 10 \(⋮\)n + 2=> n + 2 \(\in\)Ư(10) = {1; -1; 2; -2; 5; -5; 10; -10}
Lập bảng :
n + 2 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | -1 | -3 | 0 | -4 | 3 | -7 | 8 | -12 |
Vậy n \(\in\){-1;-3; 0; -4; 3; -7; 8; -12} thì P \(\in\)Z
3n+3/n-4=3n+3/3n-12=3n-12+15/3n-12
=1+15/3n-12
=>15chia hết cho 3n-12
=>3n-12 thuộc Ư(15)
bạn tự tính tieép
\(\frac{9n+3}{3n+1}=\frac{3\left(3n+1\right)}{3n+1}=3\)
Vậy với \(n\in Z\) thì \(\frac{9n+3}{3n+1}\in Z\)