Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2+\frac{-5}{2n+3}\)
Để A nguyên thì \(\frac{-5}{2n+3}\) phải nguyên
=> \(2n+3\inƯ\left(-5\right)=\left\{1;-1;5;-5\right\}\)
=> \(n\in\left\{-1;-2;1;-4\right\}\)
để A là số nguyên dương thì
4n+8\(⋮\)2n+3
Ta có 2(2n+3)\(⋮\)2n+3=> 4n+6\(⋮\)2n+3
=>4n+8-4n-6\(⋮\)2n+3
=>2\(⋮\)2n+3
Đến đây bạn tự làm tiếp nhé
Để A là số nguyên dương thì 4n+8 chia hết cho 2n+3
=>2.(2n+3) - 6 + 8 chia hết cho 2n +3
=>2.(2n+3)+2 chia hết cho 2n+3
vì 2.(2n+3) chia hết cho 2n+3 nên 2 chia hết cho 2n+3
=>2n+3 thuộc ước của 2 thuộc 1;2
Mà 2n+3 lẻ nên 2n+3 = 1=>n= - 1
Đáp án cần chọn là: B
Với n ≠ 1, ta có:
n n − 1 + 2 n + 4 n − 1 = n + 2 n + 4 n − 1 = 3 n + 4 n − 1 = ( 3 n − 3 ) + 7 n − 1 = 3 ( n − 1 ) + 7 n − 1 = 3 ( n − 1 ) n − 1 + 7 n − 1 = 3 + 7 n − 1
Yêu cầu bài toán thỏa mãn nếu 7 n − 1 ∈ Z hay n − 1∈U(7) = {±1;±7}
Ta có bảng:
Vậy n∈{2;0;−6;8}.
\(\text{#}\)\(m.ánh\)
\(a=\dfrac{4n+1}{2n-1}\)\(\text{∈ Z ⇔ 4 n + 1 ⋮ 2 n − 1 ( n ∈ Z )}\)
Vì \(2 n − 1 ⋮ 2 n − 1\)
\(⇒ 2 . ( 2 n − 1 ) ⋮ 2 n − 1\)
\(⇒ 4 n − 2 ⋮ 2 n − 1\)
\(⇒ 4 n + 1 − 4 n − 2 ⋮ 2 n − 1\)
\(⇒ 3 ⋮ 2 n − 1 hay 2 n − 1 ∈ Ư ( 3 ) = ( 1 ; 3 ; − 1 ; − 3 )\)
Lập bảng gt :
\(2n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
\(n\) | \(1\) | \(2\) | \(0\) | \(-1\) |
\(TMDK \) | \(TMDK \) | \(TMDK \) | \(TMDK \) |
Vậy \(n\text{∈}\left\{1;2;0;-1\right\}\)
a: Để A nguyên thì \(2n+1\inƯ\left(10\right)\)
mà n nguyên
nên \(2n+1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{0;-1;2;-3\right\}\)
b: B nguyên thì 3n+5-5 chia hết cho 3n+5
=>\(3n+5\inƯ\left(-5\right)\)
mà n nguyên
nên \(3n+5\in\left\{-1;5\right\}\)
=>n=-2 hoặc n=0
c: Để C nguyên thì 4n-6+16 chia hết cho 2n-3
=>\(2n-3\in\left\{1;-1\right\}\)
=>\(n\in\left\{2;1\right\}\)
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
Để A là số nguyên thì
4n+1\(^._:\)2n+3
=>4n+6-5\(^._:\)2n+3
Vì 4n+6\(^._:\)2n+3
=>5\(^._:\)2n+3
=>2n+3\(\in\)Ư(5)={1;-1;5;-5}
Ta có bảng sau:
2n+3 | n |
1 | -1 |
-1 | -2 |
5 | 1 |
-5 | -4 |
KL: n\(\in\){-1;-2;1;-4}
A=(4n+6-1)/(2n+3)=2(2n+3)/(2n+3) -1/(2n+3)
=2-1/(2n+3)
Vậy để A nguyên thì 2n+3 phải là ước của 1
=> 2n+3={-1; 1}
+/ 2n+3=-1 => 2n=-4 => n=-2
+/ 2n+3=1 => 2n=-2 => n=-1
Đs: n=-2; -1
\(\frac{4n-1}{3-2n}=\frac{4n-6+5}{3-2n}=\frac{2\left(2n-3\right)+5}{3-2n}=-2+\frac{5}{3-2n}\inℤ\)
mà \(n\inℤ\)nên \(3-2n\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Leftrightarrow n\in\left\{4,2,1,-1\right\}\).