Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
\(\frac{3-2n}{n+1}=\frac{5+\left(-2\right)+\left(-2n\right)}{n+1}=\frac{5}{n+1}+-2\) nguyên
\(\Leftrightarrow\frac{5}{n+1}\) nguyên \(\Leftrightarrow n+1\inƯ\left(5\right)\)
\(\Leftrightarrow n+1\in\left\{-5;-1;1;5\right\}\)
\(\Leftrightarrow n\in\left\{-6;-2;0;4\right\}\)
Ta có:
\(\dfrac{2n-1}{2n+3}=\dfrac{2n+3-4}{2n+3}\)\(=1-\dfrac{4}{2n+3}\)
Để \(\dfrac{2n-1}{2n+3}\) là số nguyên thì \(2n+3\inƯ\left(4\right)\)
Ta có bảng:
\(2n+3\) | \(-4\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(4\) |
\(2n\) | \(-7\) | \(-5\) | \(-4\) | \(-2\) | \(-1\) | \(1\) |
\(n\) | \(-\dfrac{7}{2}\left(loại\right)\) | \(-\dfrac{5}{2}\left(loại\right)\) | \(-2\) | \(-1\) | \(-\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{1}{2}\left(loại\right)\) |
Vậy \(n\in\left\{-2;-1\right\}\)
Để A nguyên thì 2n-1 chia hết cho 2n+3
=>2n+3-4 chia hết cho 2n+3
=>\(2n+3\in\left\{1;-1;2;-2;4;-4\right\}\)
mà n nguyên
nên \(n\in\left\{-1;-2\right\}\)
a: Ta có: \(2n+1⋮n+2\)
\(\Leftrightarrow2n+4-3⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-1;-3;1;-5\right\}\)
b: Để B là số nguyên thì \(n+3⋮n-2\)
\(\Leftrightarrow n-2+5⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{3;1;7;-3\right\}\)
c: Để C là số nguyên thì \(3n+7⋮n-1\)
\(\Leftrightarrow3n-3+10⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
hay \(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
Để B là số nguyên thì \(5n+1⋮2n-1\)
\(\Leftrightarrow10n+2⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{1;0;4;-3\right\}\)
\(\frac{n+1}{2n-1}\inℤ\Rightarrow\frac{2\left(n+1\right)}{2n-1}=\frac{2n-1+3}{2n-1}=1+\frac{3}{2n-1}\inℤ\Leftrightarrow\frac{3}{2n-1}\inℤ\)
\(\Leftrightarrow2n-1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\Leftrightarrow n\in\left\{-1,0,1,2\right\}\).
Thử lại ta được \(n\in\left\{-1,0,1,2\right\}\)thỏa mãn.
Để (2n+15)/(n+1) nguyên
[2(x+1)+13]/(n+1) nguyên
2+ 13/(n+1) nguyên
n+1 thuộc Ư13
Ta có bảng
n+1 | 1 | -1 | 13 | -13 |
n | 0 | -2 | 12 | -14 |
Vậy n=0;-2;12;-14
Đáp án cần chọn là: B
Với n ≠ 1, ta có:
n n − 1 + 2 n + 4 n − 1 = n + 2 n + 4 n − 1 = 3 n + 4 n − 1 = ( 3 n − 3 ) + 7 n − 1 = 3 ( n − 1 ) + 7 n − 1 = 3 ( n − 1 ) n − 1 + 7 n − 1 = 3 + 7 n − 1
Yêu cầu bài toán thỏa mãn nếu 7 n − 1 ∈ Z hay n − 1∈U(7) = {±1;±7}
Ta có bảng:
Vậy n∈{2;0;−6;8}.
nếu để phân số đó là số nguyên thì :
ta có \(\frac{2n+1}{n-1}\) \(\Rightarrow\frac{2n-2+3}{n-1}\)\(\Rightarrow\frac{2\left(n-1\right)+3}{n-1}\)\(\Leftrightarrow n-1\inƯC\left(3\right)=\left\{-3;-1;1;3\right\}\)
nếu n-1=-3=>n=-4
n-1=-1=>n=-2
n-1=1=>n=0
n-1=3=>n=1
vậy n \(\in\left\{-4;-2;0;1\right\}\)