Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: 2n + 7 chia hết cho n + 2
2n + 4 + 3 chia hết cho n + 2
2.(n+2) + 3 chia hết cho n+2
mà 2.(n+2) chia hết cho n + 2
=> 3 chia hết cho n + 2
...
bn tự làm tiếp nha
b) ta có: 3n + 10 chia hết cho n - 3
3n -9 + 19 chia hết chi n - 3
3.(n-3)+19 chia hết cho n - 3
=>...
a)n+2={1;2;4;8;16}
n={-1;0;2;6;14}
b)(n-4)chia hết cho(n-1)
(n-1-3) chia hết cho(n-1)
Vì (n-1)chia hết cho (n-1) suy ra -3 chia hết cho (n-1)
Vậy n-1 thuộc Ư(-3)={1;3;-1;-3}
suy ra n={1;4;0;-2}
c) 2n+8 thuộc B(n+1)
suy ra n+1 chia het cho 2n+8
suy ra 2n+2 chia het cho 2n+8
suy ra (2n+8)-6 chia het cho2n+8
Vi 2n+8 chia het cho 2n+8 nen -6 chia het cho 2n+8
suy ra 2n+8 thuộc {1;2;3;6;-1;-2;-3;-6}
mà 2n+8 là số nguyên chẵn( chẵn + chẵn = chẵn)
suy ra 2n+8 thuộc{2;6;-2;-6}
suy ra 2n thuộc{-6;-2;-10;-14}
suy ra n thuộc {-3;-1;-5;-7}
d) 3n-1 chia het cho n-2
suy ra [(3n-6)+5chia hết cho n-2
Vì 3n-6 chia hết cho n-2 suy ra 5 chia hết cho n-2
suy ra n-2 thuộc{1;5;-1;-5}
suy ra n thuộc{3;7;1;-3}
e)3n+2 chia hết cho 2n+1
suy ra [(6n+3)+1] chia hết cho 2n+1
Vì 6n+3 chia hết cho 2n+1 nên 1 chia hết cho 2n+1
suy ra 2n+1 thuộc{1;-1}
suy ra 2n thuộc {0;-2}
suy ra n thuộc {0;-1}
\(2n-1⋮n+1\)
\(\Rightarrow2n+2-3⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n+1=1;-1;3;-3\)
\(\Rightarrow n=0;-2;2;-4\)
(2n + 3) ⋮ (3n + 2)
⇒ 3.(2n + 3) ⋮ (3n + 2)
⇒ (6n + 9) ⋮ (3n + 2)
⇒ (6n + 4 + 5) ⋮ (3n + 2)
⇒ [2(3n + 2) + 5] ⋮ (3n + 2)
Để (2n + 3) ⋮ (3n + 2) thì 5 ⋮ (3n + 2)
⇒ 3n + 2 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ 3n ∈ {-7; -3; -1; 3}
⇒ n ∈ {-7/3; -1; -1/3; 1}
Mà n là số nguyên
⇒ n ∈ {-1; 1}
a) 15-n \(⋮\)n-2
\(\Rightarrow\)-(15-n) \(⋮\) n-2
\(\Rightarrow\)n-15 \(⋮\)n-2
\(\Rightarrow\)n-2-13 \(⋮\)n-2
\(\Rightarrow\)13 \(⋮\)n-2
\(\Rightarrow\)n-2 \(\in\)Ư(13)
\(\Rightarrow\)Ư(13) \(\in\){-1;1-13;13}
Lập bảng:
n-2 | -1 | 1 | -13 | 13 |
n | 1 | 3 | -11 | 15 |
Vậy...
b) 3-4n \(⋮\)2n-1
\(\Rightarrow\)4n-3 \(⋮\)2n-1
\(\Rightarrow\)2(2n-1)-1 \(⋮\)2n-1
\(\Rightarrow\)1 \(⋮\)2n-1
\(\Rightarrow\)2n-1 \(\in\)Ư(1)
\(\Rightarrow\)Ư(1) \(\in\){-1;1}
Lập bảng:
2n-1 | -1 | 1 |
n | 0 | 1 |
NX | tm | tm |
Vậy...
c) x-5 \(⋮\)3x-2
\(\Rightarrow\)3(x-5) \(⋮\)3x-2
\(\Rightarrow\)3x-15 \(⋮\)3x-2
\(\Rightarrow\)3x-2-13 \(⋮\)3x-2
\(\Rightarrow\)13 \(⋮\)3x-2
\(\Rightarrow\)3x-2 \(\in\)Ư(13)
\(\Rightarrow\)Ư(13) \(\in\){-1;1;-13;13}
Lập bảng:
3x-2 | -1 | 1 | -13 | 13 |
x | 1/3 | 1 | -11/3 | 5 |
NX | loại | tm | loại | tm |
Vậy...
d) 3x2-13 \(⋮\)x-2
\(\Rightarrow\)3x(x-2)+6x-13 \(⋮\)x-2
\(\Rightarrow\)3x(x-2)+6(x-2)-1 \(⋮\)x-2
\(\Rightarrow\)1 \(⋮\)x-2
\(\Rightarrow\)x-2 \(\in\)Ư(1)
\(\Rightarrow\)Ư(1) \(\in\){-1;1}
Lập bảng:
x-2 | -1 | 1 |
x | 1 | 3 |
Vậy...
Bạn check lại giúp mình nhé, mấy dạng kiểu này(câu a, b mình chưa làm quen) nên ko chắc ạ.
|x-4|-7=11
|x-4| =11-7
|x-4| =18
TH1:x-4=18
x=18+4
x=22
TH2: x-4=-18
x= -18+4
x= -14
2n-1=2n+6-7
2n+6 chia hết cho n+3 rồi
suy ra 7 chia hết n+3
suyra n+3 thuộc {+-1;+-7}
suy ra n thuộc {-10;-4;-2;4}
vu quy dat cảm ơn bạn nhiều, mình hiểu dạng bài này rồi ^^
\(3n+17⋮2n+3\)
\(\Leftrightarrow2.\left(3n+17\right)⋮2n+3\)
\(\Leftrightarrow6n+34⋮2n+3\)
\(\Leftrightarrow3.\left(2n+3\right)+25⋮2n+3\)
Mà \(3.\left(2n+3\right)⋮2n+3\)
\(\Rightarrow25⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
Làm nốt
ta có : \(6n-3=3\times\left(2n-2\right)+3\) chia hết cho 2n-2 khi
3 chia hết cho 2n-2
mà 2n-2 là số chẵn nên 3 không thể chia hết cho 2n-2 vậy không tồn tại số tự nhiên thỏa mãn
\(3-2n⋮n+1\)
\(\Leftrightarrow-2n+3⋮n+1\)
\(\Leftrightarrow-2\left(n+1\right)+5⋮n+1\)
\(\Leftrightarrow5⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(5\right)\)
\(\RightarrowƯ\left(5\right)\in\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
mình chưa hiểu, giải thích từ đầu đến cuối đi