\(\dfrac{2n-1}{n+1}\) là số nguyên

Nhanh giúp mình nhé !

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2017

\(\dfrac{2n-1}{n+1}=\dfrac{2\left(n+1\right)-3}{n+1}\)

Để \(\dfrac{2\left(n+1\right)-3}{n+1}\in Z\Rightarrow3⋮n+1\)

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-1;-3;1;3\right\}\)

\(n+1=-1\Rightarrow n=-2\)

\(n+1=-3\Rightarrow n=-4\)

\(n+1=1\Rightarrow n=0\)

\(n+1=3\Rightarrow n=2\)

3 tháng 3 2017

thanks

18 tháng 7 2017

(sữa đề tìm \(x\) nguyên )

\(2^x+3+2^x=144\Leftrightarrow2^x+2^x=141\)

ta có : \(2^x+2^x\) là số chẳn

\(141\) là số lẽ \(\Rightarrow\) phương trình vô nghiệm

14 tháng 4 2017

Ta có: ( x + 2)( x - 5) = -12

=> \(x+2\inƯ\left(-12\right);x-5\inƯ\left(-12\right)\)

mà Ư (-12) = \(\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

\(\Rightarrow\left\{{}\begin{matrix}x+2\in\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\\x-5\in\left\{"....."\right\}\end{matrix}\right.\)

Xét các t/h:

25 tháng 7 2017

Đề sai, tớ sửa lại

Ta có :

\(A=2+2^2+..............+2^{60}\)

\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...........+\left(2^{59}+2^{60}\right)\)

\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+.........+2^{59}\left(1+2\right)\)

\(\Leftrightarrow A=2.3+2^3.3+...........+2^{59}.3\)

\(\Leftrightarrow A=3\left(2+2^2+..........+2^{59}\right)\)

\(\Leftrightarrow A⋮3\rightarrowđpcm\)

Lại có :

\(A=2+2^2+2^3+............+2^{60}\)

\(\Leftrightarrow A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..........+\left(2^{58}+2^{59}+2^{60}\right)\)

\(\Leftrightarrow A=2\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+..........+2^{59}\left(1+2+2^2\right)\)

\(\Leftrightarrow A=2.7+2^4.7+............+2^{58}.7\)

\(\Leftrightarrow A=7\left(2+2^3+..........+2^{58}\right)\)

\(\Leftrightarrow A⋮7\rightarrowđpcm\)

Ta tiếp tục có :

\(A=2+2^2+2^3+............+2^{60}\)

\(\Leftrightarrow A=\left(2+2^2+2^3+2^4\right)+..............+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(\Leftrightarrow A=2\left(1+2+2^2+2^3\right)+.............+2^{57}\left(1+2+2^2+2^3\right)\)

\(\Leftrightarrow A=2.15+............+2^{57}.15\)

\(\Leftrightarrow A=15\left(2+.........+2^{57}\right)\)

\(\Leftrightarrow A⋮15\rightarrowđpcm\)

7 tháng 7 2017

3/ Chu vi hình chữ nhật:

\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)

Diện tích hình chữ nhật:

\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)

7 tháng 7 2017

Đơn vị trong ngoặc ghi là đơn vị diện tích nhá!

5 tháng 7 2017

\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\)

\(\Leftrightarrow6\left(x-7\right)=7\left(y-6\right)\)

\(6x-42=7y-42\)

\(6x=7y\Leftrightarrow x=\dfrac{7}{6}y\)

\(x=-4:\left(7-6\right).7=-28\)

\(y=-28-4=-24\)

b tương tự

5 tháng 7 2017

Giải:b)

\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\) nên \(6\left(x-7\right)=7\left(y-6\right)\)

Do đó \(6x-42=7y-42\) nên \(6x=7y\)

Suy ra \(6x-6y=y\) hay \(6\left(x-y\right)=y\)

Nên 6.(-4) = y

Vậy y = -24, x = \(\dfrac{7.\left(-24\right)}{6}\)= -28

c)

\(\dfrac{x+3}{y+5}=\dfrac{3}{5}\) nên \(5\left(x+3\right)=3\left(y+5\right)\)

Do đó \(5x+15=3y+15\) nên \(5x=3y\)

Suy ra \(5x+5y=3y+5y\)

\(5\left(x+y\right)=8y\)

\(5.16=8y\)

Nên \(y=\dfrac{5.16}{8}=\dfrac{80}{8}=10\)

Vậy y = 10, x = 16 - 10 =6

22 tháng 7 2017

\(\Rightarrow\dfrac{5}{4}-\dfrac{1}{4}x=\dfrac{3}{10}x-\dfrac{2}{5}\)

\(\Rightarrow\dfrac{5}{4}+\dfrac{2}{5}=\dfrac{3}{10}x-\dfrac{1}{4}x\)

\(\Rightarrow\dfrac{33}{20}=\dfrac{11}{20}x\)

\(\Rightarrow x=\dfrac{33}{20}\div\dfrac{11}{20}\)

\(\Rightarrow x=3\)

22 tháng 7 2017

\(1\dfrac{1}{4}-x\dfrac{1}{4}=x\cdot30\%\cdot\dfrac{2}{5}\)

\(\Leftrightarrow\dfrac{5}{4}-x\dfrac{1}{4}=x\cdot\dfrac{3}{10}-\dfrac{2}{5}\)

\(\Leftrightarrow\dfrac{5}{4}-\dfrac{1}{4}x=\dfrac{3}{10}x-\dfrac{2}{5}\)

\(\Leftrightarrow25-5x=6x-8\)

\(\Leftrightarrow-5x-6x=-8-25\)

\(\Leftrightarrow-11x=-33\)

\(\Leftrightarrow x=3\)

Vậy x = 3

20 tháng 9 2017

A=5+52 +53 +..........+575

5A=52+53+54+...+576

5A-A=576-5

a=\(\dfrac{5^{76}-5}{4}\)

\(\dfrac{2}{3^2}+\dfrac{2}{4^2}+\dfrac{2}{5^2}+....\dfrac{2}{2016^2}\)

Ta thấy: \(\dfrac{2}{3^2}< \dfrac{2}{2.3}\)
\(\dfrac{2}{4^2}< \dfrac{2}{3.4}\)
...\(\dfrac{2}{2016^2}< \dfrac{2}{2015.2016}\)
Đặt:A=\(\dfrac{2}{3^2}+\dfrac{2}{4^2}+\dfrac{2}{5^2}+...+\dfrac{2}{2016^2}\)
=>\(A< \dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+...+\dfrac{2}{2015.2016}\)
=>\(A< \dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+\dfrac{2}{4}-\dfrac{2}{5}+...+\dfrac{2}{2015}-\dfrac{2}{2016}\)
=>A<\(\dfrac{2}{2}-\dfrac{2}{2016}\)
=>A<\(\dfrac{1007}{1008}\)\(\dfrac{1007}{1008}\) < 1
=>A<1
Vậy \(\dfrac{2}{3^2}+\dfrac{2}{4^2}+\dfrac{2}{5^2}+...+\dfrac{2}{2016^2}\)<1 (\(đpcm\))

2 tháng 4 2017

\(\dfrac{2}{3^2}+\dfrac{2}{4^2}+...+\dfrac{2}{2016^2}=2\left(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}\right)\)

Ta có: \(\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{2016^2}< \dfrac{1}{2015.2016}\)

\(\Rightarrow2\left(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}\right)< 2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2015.2016}\right)\)

\(\Rightarrow2\left(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}\right)< 2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}-\dfrac{1}{2016}\right)\)

\(\Rightarrow2\left(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2016^2}\right)< 2\left(\dfrac{1}{2}-\dfrac{1}{2017}\right)=1-\dfrac{2}{2017}< 1\)

=> đpcm