Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3n+2 chia het cho n-1
=> 3(n-1)+5 chia hết cho n-1 => 5 chia hết cho n-1=> \(n-1\in U\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\)\(\left\{-4;0;2;6\right\}\)
3n-24 chia hết cho n-4 = > 3(n-4)+36 chia het cho n-4 => n = {...}
a) Để \(3n+2⋮n-1\)
\(\Rightarrow\left(3n-3\right)+5⋮n-1\)
\(\Rightarrow3\left(n-1\right)+5⋮n-1\)
\(\Rightarrow\begin{cases}3\left(n-1\right)⋮n-1\\5⋮n-1\end{cases}\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng sau :
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Vậy \(n\in\left\{-4;0;2;6\right\}\)
b) Để \(3n-24⋮n-4\)
\(\Rightarrow\left(3n-12\right)-12⋮n-4\)
\(\Rightarrow3\left(n-4\right)-12⋮n-4\)
\(\Rightarrow\begin{cases}3\left(n-4\right)⋮n-4\\12⋮n-4\end{cases}\)
\(\Rightarrow n-4\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Ta có bảng sau
n-4 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
n | -8 | -2 | 0 | 1 | 2 | 3 | 5 | 6 | 7 | 8 | 10 | 16 |
Vậy \(x\in\left\{-8;-2;0;1;2;3;5;6;7;8;10;16\right\}\)
c) Câu c hình như sai hoặc thiếu đề
a) 3n+2 \(⋮\) n-1
3n-3+5 \(⋮\) n-1
3(n-1)+5 \(⋮\) n-1
Mà 3(n-1) \(⋮\) n-1 => 5 \(⋮\) n-1
Ta có: Ư(5)={1;-1;5;-5}
Sau đó lập bảng giá trị rồi tính.
b) 3n-24 \(⋮\) n-4
3n-12-12 \(⋮\) n-4
3(n-4) -12 \(⋮\) n-4
Mà 3(n-4) \(⋮\) n-4 => 12 \(⋮\) n-4
Ta có Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
Sau đó cũng lập bảng giá trị rồi tính.
c) n2+5 \(⋮\)n+1
n2+n-n+5 \(⋮\) n+1
n(n+1) -n+5 \(⋮\) n+1
Mà n(n-1) \(⋮\) n+1 => n+5 \(⋮\) n+1
=> n+1+4 \(⋮\) n+1
Mà n+1 \(⋮\) n+1 => 4 \(⋮\) n+1
Ta có Ư(4)={1;-1;2;-2;4;-4}
Tự làm tiếp nhé!
a) 3n + 2 = 3n - 3 + 5 = 3(n - 1) + 5 chia hết cho n - 1 mà 3(n - 1) chia hết cho n - 1 nên 5 chia hết cho n - 1
=> n - 1\(\in\left\{-5;-1;1;5\right\}\)=> n\(\in\left\{-4;0;2;6\right\}\)
b) 3n - 24 = 3n - 12 - 12 = 3(n - 4) - 12 chia hết cho n - 4 mà 3(n - 4) chia hết cho n - 4 nên 12 chia hết cho n - 4
=> n - 4\(\in\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
=> n\(\in\left\{-8;-2;0;1;2;3;5;6;7;8;10;16\right\}\)
c) n2 + 5 = n2 - 1 + 6 = (n - 1)(n + 1) + 6 chia hết cho (n + 1) nên 6 chia hết cho n + 1
=> n + 1\(\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\)=> n\(\in\left\{-7;-4;-3;-2;0;1;2;5\right\}\)
a) \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
\(\Rightarrow n-1\inƯ\left(5\right)\Rightarrow n-1\in\left\{-5;-1;1;5\right\}\Rightarrow n\in\left\{-4;0;2;6\right\}\)
b) \(\frac{3n-24}{n-4}=\frac{3n-12-12}{n-4}=\frac{3\left(n-4\right)-12}{n-4}=3+\frac{12}{n-4}\)
\(\Rightarrow n-4\inƯ\left(12\right)\Rightarrow n-4\in\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
\(\Rightarrow n\in\left\{-8;-2;0;1;2;3;5;6;7;8;10;16\right\}\)
c) \(\frac{n^2+5}{n+1}=\frac{n\left(n+1\right)-\left(n+1\right)+6}{n+1}=n-1+\frac{6}{n+1}\)
\(\Rightarrow n+1\inƯ\left(6\right)\Rightarrow n+1\in\left\{-6;-3;-2;-1;1;2;3;6\right\}\Rightarrow n\in\left\{-7;-4;-3;-2;0;1;2;5\right\}\)
a, n - 2 ⋮ n + 1
=> n + 1 - 3 ⋮ n + 1
=> 3 ⋮ n + 1
=> n + 1 thuộc Ư(3)
=> n + 1 thuộc {-1; 1; -3; 3}
=> n thuộc {-2; 0; -4; 2}
b, 2n - 3 ⋮ n - 1
=> 2n - 2 - 1 ⋮ n - 1
=> 2(n - 1) - 1 ⋮ n - 1
=> 1 ⋮ n - 1
=> n - 1 thuộc {-1; 1}
=> n thuộc {0; 2}
c, 3n + 5 ⋮ 2n - 1
=> 6n + 10 ⋮ 2n - 1
=> 6n - 3 + 13 ⋮ 2n - 1
=> 3(2n - 1) + 13 ⋮ 2n - 1
=> 13 ⋮ 2n - 1
=> 2n - 1 thuộc Ư(13)
=> 2n - 1 thuộc {-1; 1; -13; 13}
=> 2n thuộc {0; 2; -12; 14}
=> n thuộc {0; 1; -6; 7}
a/
n-6 chia hết cho n-1
=>(n-1)-5 chia hết cho n-1
=>n-1 E U(5)={1;-1;5;-5}
=>n E {0;2;6;-4}
vì n E N => n E{0;2;6}
b/3n+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
=>5 chia hết cho n-1
=>n-1 E U(5)={1;-1;5;-5}
=>n E {0;2;6;-4}
vì n E N => n E{0;2;6}
c/
3n+24 chia hết cho n-4
=>3(n-4)+36 chia hết cho n-4
=>36 chia hết cho n-4
=>n-4 E U(36) ={1;-1;2;-2;3;-3;4;-4;9;-9;12;-12;18;-18;36;-36}
=> =>n E {5;3;6;2;7;1;8;0;13;-5;16;-8;22;-14;40;-32}
vì n E N
=>n E {0;1;3;5;6;7;8;13;16;22;40;}
.........mỏi tay V~
a, n-6 chia hết cho n-1
=> n-1-5 chia hết cho n-1
=> -5 chia hết cho n-1
=> n-1 thuộc Ư(-5)= -5;-1;1;5
Sau đó bạn kẻ bảng ra. Những câu sau làm tương tự, bạn chỉ cần biến đổi sao cho vế phải có dạng là 1 tích và 1 số nguyên, tích đó chia hết cho vế trái, rồi suy ra vế trái thuộc ước của số nguyên đó là được. Chọn nha
a)3n+2/n-1=>3n-3+5/n-1.Vì3n-3/n-1=>5/n-1=>n-1 thuộc ước 5
b)3n+24/n-4=>3n-12+36/n-4.Vì 3n-12/n-4=>36/n-4=>n-4 thuộc ước 36
c)n^2+5/n+1=>n*n+5/n+1=>n*(n+1)+4/n+1.Vì n*(n+1)/n+1=>4/n-1=>n+1 thuộc ước 4
a/ \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3}{n-1}+6\)
=>n-1 thuộc ƯỚC của 3
=>n-1=1=>n=2
=>n-1=-1=>n=0
=>n-1=3=>n=4
=>n-1=-3=>n=-1
b/ \(\frac{3\left(n+4\right)+12}{n-4}=\frac{3}{n-4}+13\)
=>n-4 thuộc ƯỚC của 3
=>n-4=1=>n=5
=>n-4=-1=>n=3
=>n-4=3=>n=7
=>n-4=-3=>n=1
câuc(uoc cua5) tương tự mình giải vậy ko bít đúng ko nữa
a: \(\Leftrightarrow3n-3+5⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
b: \(\Leftrightarrow3n-12-12⋮n-4\)
\(\Leftrightarrow n-4\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
hay \(n\in\left\{5;3;6;2;7;1;8;0;10;-2;16;-8\right\}\)
c: \(\Leftrightarrow n^2-1+6⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)