Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tách (-36) và 9 ra,kiểu như thế này
8300=(23)100 Kiểu như thế thui nhé ^^
có phải là (-36)1000:91000=2n không?
nếu là như vậy thì n =2
\(\left(-36\right)^{1000}:9^{1000}=2^n\)
\(\Rightarrow\left(-\dfrac{36}{9}\right)^{1000}=2^n\)
\(\Rightarrow\left(-4\right)^{1000}=2^n\)
\(\Rightarrow4^{1000}=2^n\)
\(\Rightarrow\left(2^2\right)^{1000}=2^n\Rightarrow2^{2000}=2^n\)
\(\Rightarrow n=2000\)
Vậy............................
a) Vì \(45=BCNN\left(5,9\right);ƯCLN\left(5,9\right)=1\)
Ta có :
\(36^{36}-9^{10}⋮9\) \(\left(1\right)\)
Mặt khác :
\(36^{36}=\left(......6\right)\)
\(9^{10}=\left(9^2\right)^5=81^5=\left(.......1\right)\)
Từ \(\Rightarrow36^{36}-9^{10}=\left(.....6\right)-\left(...1\right)=\left(.....5\right)⋮5\) \(\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Rightarrow36^{36}-9^{10}⋮45\rightarrowđpcm\)
b) Ta có :
\(7^{1000}=\left(7^2\right)^{500}=49^{500}\)
\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)
Ta có lũy thừa tận cùng là 9 khi nâng lên lũy thừa bặc lũy thừa chẵn chữ số tận cùng sẽ là 1
\(\Rightarrow\left\{{}\begin{matrix}49^{500}=\left(....1\right)\\9^{500}=\left(....1\right)\end{matrix}\right.\)
\(\Rightarrow7^{1000}-3^{1000}=\left(.....1\right)-\left(...1\right)=\left(...0\right)⋮10\)
Vậy \(7^{1000}-3^{1000}⋮10\rightarrowđpcm\)
(-36)^1000:(-9)^1000=2^n
[(-36):9]^1000=2^n
4^1000=2^n
2^(2.1000)=2^n
2^2000=2^n
vậy n = 2000
\(\left(-36\right)^{1000}:9^{1000}=2^n\)
\(36^{1000}:9^{1000}=2^n\)
\(\left(36:9\right)^{1000}=2^n\)
\(4^{1000}=2^n\)
\(\left(2^2\right)^{1000}=2^n\)
\(2^{2000}=2^n\)
\(\Rightarrow n=2000\)