\(2n+1⋮\left(n-3\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

Ta có : 2n + 3 chia hết cho n - 3

<=> 2n - 6 + 3 chai hết cho n - 3

=> 3 chai hết cho n - 3

=> n - 3 thuộc Ư(3) = {-3;-1;1;3}

Ta có bảng:

n - 3-3-113
n0246
21 tháng 2 2017

Bài này dữ liệu hơi sai sai

VD n bằng 4 thì số nào chả chia đc dúng ko

k mình nha

5 tháng 1 2019

\(------huongdan-----\)

\(Taco:\)

\(\left(3n-2n\right)⋮n+1\Leftrightarrow n⋮n+1\Leftrightarrow\left(n+1\right)-n⋮n+1\Leftrightarrow1⋮n+1\)

\(\Leftrightarrow n+1\in\left\{-1;1\right\}\Leftrightarrow n\in\left\{-2;0\right\}\)

\(b,2n-4⋮n+2\Leftrightarrow2n+4-2n+4⋮2n+4\Leftrightarrow8⋮2n+4\)

dễ thấy: 2n+4 chẵn => 2n+4 là ước chẵn của 8

\(\Rightarrow2n+4\in\left\{2;4;8;-2;-4;-8\right\}\Rightarrow2n\in\left\{-2;0;4;-6;-8;-12\right\}\)

\(\Rightarrow n\in\left\{-1;0;2;-3;-4;-6\right\}\)

5 tháng 1 2019

\(2n-4⋮n+2\)

\(\Rightarrow2n+4-8⋮n+2\)

\(\Rightarrow2\left(n+2\right)+8⋮n+2\)

\(\Rightarrow n+2\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

bn tụ lập bảng ha ~ 

5 tháng 1 2019

Ta có : 3 - 2n = 5 - (1 + n). 2

Do 1 + n \(⋮\)n + 1 ( số đối) => 2.(1 + n) \(⋮\)n + 1

Để 3 - 2n \(⋮\)n + 1 thì 5 \(⋮\)n + 1 => n + 1 \(\in\)Ư(5) = {1; 5; -1; -5}

Lập bảng :

n + 115-1-5
  n04-2-6

Vậy ....

a) Vì 3\(⋮\)n

=> n\(\in\)Ư(3)={ 1; 3 }

Vậy, n=1 hoặc n=3

17 tháng 10 2018

A:    n=3;1                  E:     n=2

B:     n=6;2                  F:    n=2

c:     n=1                     G:     n=2

D:    n=2                      H:     n=5

5 tháng 1 2019

a)

\(n+5⋮n+1\)

\(\Rightarrow n+1+4⋮n+1\)

\(\Rightarrow4⋮n+1\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;-2;1;-3;3;-5\right\}\)

5 tháng 1 2019

\(a,\left(n+5\right)⋮\left(n+1\right)\Leftrightarrow\left(n+1\right)+4⋮\left(n+1\right)\)

\(\Leftrightarrow4⋮n+1\left(n\inℤ\right)\)

\(\Leftrightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow n=-2;0;-3;1;-5;3\)

Vậy \(n=-5;-3;-2;0;1;3\)

18 tháng 6 2018

a) Điều kiện xác định: n khác 4

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)

Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)

\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)

Vậy .............

b) \(n\in\left\{-2;-4\right\}\)

c) \(n\in\left\{-2;-1;3;5\right\}\)

d) \(n\in\left\{0;-2;2;-4\right\}\)

e) \(n\in\left\{0;2;-6;8\right\}\)

(Bài này có 1 bạn hỏi rồi bạn nhé!!!)

Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0   <=> n khác 7

b) Với n = 7 thì mẫu số bằng 0  => phân số không tồn tại

c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)

Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)

Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)

13 tháng 7 2020

Ta có :

\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)

Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)

\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)

2 tháng 9 2018

a) (2n-1)4 : (2n-1) = 27

(2n-1)3 = 27  =33

=> 2n - 1= 3

=> 2n = 4

n = 2

phần b,c làm tương tự nha bn

2 tháng 9 2018

d) (21+n) : 9 = 95:94

(2n+1) : 9 = 9

2n + 1 = 81

2n = 80

n = 40

28 tháng 5 2016

a, 59x + 46y = 2004

Vì 2004 là số chẵn, 46y là số chẵn => 59x là số chẵn

=> x là số chẵn, mà x là số nguyên tố

=> x = 2

=> 2.59 + 46y = 2004

=> 46y = 2004 ‐ 118

=> 46y = 1886

=> y = 1886:46 => y = 41

Vậy x = 2; y = 41

29 tháng 5 2016

đã làm đề 23 rùi hả!!!!!