Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6n-5 chia hết cho 2n+3
=> 6n+9-14 chia hết cho 2n+3
=> 3(2n+3)-14 chia hết cho 2n+3
=> 14 chia hết cho 2n+3
=> 2n+3 là ước của 14
Mà 2n+3 là số nguyên lẻ
=> 2n+3 thuộc {-1;1}
=> n thuộc {-2;-1}
a) Để â nhận giá trị nguyên
\(\Rightarrow8n-9⋮2n+5\)
\(\Rightarrow8n+20-29⋮2n+5\)
\(\Rightarrow4.\left(2n+5\right)-29⋮2n+5\)
mà \(4.\left(2n+5\right)⋮2n+5\)
\(\Rightarrow-29⋮2n+5\)
\(\Rightarrow2n+5\inƯ\left(-29\right)\)
tự làm nốt nhé, tick nha
a, ta có : n + 6 = n +1 + 5
=> n + 1 thuộc U(5)
mà U(5) = {1;5;-1;-5}
suy ra:
n + 1 | 1 | 5 | -1 | -5 |
n | 0 | 4 | -2 | -6 |
vậy n = {0;4;-2;-6}
b, ta có: 2n + 1 = ( n-1 ) + (n - 1) + 3
=> n - 1 thuộc U(3)
mà U(3) = { 1;3;-1;-3 }
suy ra:
n - 1 | 1 | 3 | -1 | -3 |
n | 2 | 4 | 0 | -2 |
vậy n = { 2;4;0;-2 }
bài 1:x.y=-15 => x=3;y=-5
x=-3;y=5
x=5;y=-3
x=-5;y=3
x=-1;y=15
x=1;y=-15
Bài 1 đơn giản rồi nha, chỉ cần liệt kê các gặp số ra là xong
BÀi 2:
ta có:
\(\frac{n-3}{n-1}=\frac{n-1-2}{n-1}=1-\frac{2}{n-1}\)
Để n-3 chia hết cho n-1 <=> \(\frac{2}{n-1}\inℤ\Rightarrow2⋮n-1\)
\(\Rightarrow n-1\inƯ\left(2\right)\)
\(\Rightarrow n-1\in\left\{\pm1;\pm2\right\}\)
ta có bảng sau:
n-1 | -2 | -1 | 1 | 2 |
n | -1 | 0 | 2 | 3 |
\(n\in\left\{-1;0;2;3\right\}\)
4n - 5 chia hết cho 2n - 1
ta có : 4n - 5 = 4n - 2 - 3 = ( 4n - 2 ) - 3 = 2 ( 2n - 1 ) - 3
để 4n - 5 chia hết cho 2n - 1 thì 2 ( 2n - 1 ) chia hết cho 2n - 1
=> -3 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư ( -3 )
lập bảng ta có :
2n - 1 | -3 | 3 | -1 | 1 |
n | -1 | 2 | 0 | 1 |
vậy n = { -1 ; 2 ; 0 ; 1 }
Ta có : 4n - 5 chia hết cho 2n - 1
<=> 4n - 2 - 3 chia hết cho 2n - 1
=> 2.(2n - 1) - 3 chia hết cho 2n - 1
=> 3 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng:
2n - 1 | -3 | -1 | 1 | 3 |
2n | -2 | 0 | 2 | 4 |
n | -1 (loại) | 0 | 1 | 2 |
(n+5)={-10,-5,-2,-1,1,2,5,10)
n={-15,-10,-7,-8,-4,-3,0,5}