Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c/
$6n+2\vdots 2n-1$
$3(2n-1)+5\vdots 2n-1$
$\Rightarrow 5\vdots 2n-1$
$\Rightarrow 2n-1\in Ư(5)$
$\Rightarrow 2n-1\in \left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in \left\{1; 0; 3; -2\right\}$
Câu a/
$2n-3\vdots n+1$
$2(n+1)-5\vdots n+1$
$5\vdots n+1$
$\Rightarrow n+1\in Ư(5)$
$\Rightarrow n+1\in \left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in \left\{0; -2; 4; -6\right\}$
a,
Gọi \(d=ƯC\left(n+1;2n+3\right)\) với \(d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\) \(\Rightarrow2n+3-2\left(n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow n+1\) và \(2n+3\) nguyên tố cùng nhau với mọi \(n\in N\)
Các câu sau em biến đổi tương tự
a, 12 - (2\(x^2\) - 3) = 7
2\(x^2\) - 3 = 12 - 7
2\(x^2\) - 3 = 5
2\(x^2\) = 8
\(x^2\) = 4
\(\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
a) \(\left(x-1\right)\left(x^3+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^3+8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x^3=-8\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Lời giải:
a. $15-(-2x)=22+3x$
$15+2x=22+3x$
$15-22=3x-2x$
$-7=x$
b.
$5(17-3x)+24=4$
$5(17-3x)=4-24=-20$
$17-3x=-20:5=-4$
$3x=17-(-4)=21$
$x=21:3=7$
c.
$42:(x^2+5)=3$
$x^2+5=42:3=14$
$x^2=14-5=9=3^2=(-3)^2$
$\Rightarrow x=3$ hoặc $x=-3$
d.
$73-3x^2=5^6:(-5)^4=(-5)^6:(-5)^4=(-5)^2=25$
$3x^2=73-25=48$
$x^2=48:3=16=4^2=(-4)^2$
$\Rightarrow x=4$ hoặc $x=-4$
a) (x - 2).3⁵ = 3⁷
x - 2 = 3⁷ : 3⁵
x - 2 = 3²
x - 2 = 9
x = 9 + 2
x = 11
b) x² - 2x = 0
x(x - 2) = 0
⇒ x = 0 hoặc x - 2 = 0
*) x - 2 = 0
x = 2
Vậy x = 0; x = 2
c) (2x - 1)² = 49
⇒ 2x - 1 = 7 hoặc 2x - 1 = -7
*) 2x - 1 = 7
2x = 7 + 1
2x = 8
x = 8 : 2
x = 4
*) 2x - 1 = -7
2x = -7 + 1
2x = -6
x = -6 : 2
x = -3
Vậy x = -3; x = 4
a, 2.3\(x+1\) + 38 = 23.52
2.3\(^{x+1}\) + 38 = 200
2.3\(^{x+1}\) = 200 - 38
2.3\(^{x+1}\) = 162
3\(^{x+1}\) = 162 : 2
3\(^{x+1}\) = 81
3\(^{x+1}\) = 34
\(x+1\) = 4
\(x\) = 3
b, 2\(^{x+1}\) + 4.2\(^x\) = 3.25
2\(^x\).(2 + 4) = 96
2\(^x\).6 = 96
2\(^x\) = 96 : 6
2\(^x\) = 16
2\(^x\) = 24
\(x\) = 4
a. Với $x,y$ là số nguyên thì $7-2x, y-3$ cũng là số nguyên. Mà $(7-2x)(y-3)=12$ và $7-2x$ là số lẻ nên ta xét các TH sau:
TH1:
$7-2x=1, y-3=12\Rightarrow x=3; y=15$ (tm)
TH2:
$7-2x=-1; y-3=-12\Rightarrow x=4; y=-9$ (tm)
TH3:
$7-2x=3; y-3=4\Rightarrow x=2; y=7$ (tm)
TH4:
$7-2x=-3; y-3=-4\Rightarrow x=5; y=-1$ (tm)
b.
Với $x,y$ là số nguyên thì $2x-3, y+1$ cũng là số nguyên. Mà $(2x-3)(y+1)=12$ và $2x-3$ là số lẻ nên ta có các TH sau:
TH1: $2x-3=1; y+1=12\Rightarrow x=2; y=11$ (tm)
TH2: $2x-3=-1; y+1=-12\Rightarrow x=1; y=-13$ (tm)
TH3: $2x-3=3; y+1=4\Rightarrow x=3; y=3$ (tm)
TH4: $2x-3=-3; y+1=-4\Rightarrow x=0; y=-5$ (tm)
a) 40 = 2³.5
24 = 2³.3
ƯCLN(40; 24) = 2³ = 8
ƯC(40; 24) = Ư(8) = {1; 2 ; 4; 8}
b) 80 = 2⁴.5
144 = 2⁴.3²
ƯCLN(80; 144) = 2⁴ = 16
ƯC(80; 144) = Ư(16) = {1; 2; 4; 8; 16}
c) 9 = 3²
18 = 2.3²
72 = 2³.3²
ƯCLN(9; 18; 72) = 3² = 9
ƯC(9; 18; 72) = Ư(9) = {1; 3; 9}
d) 25 = 5²
55 = 5.11
75 = 3.5²
ƯCLN(25; 55; 75) = 5
ƯC(25; 55; 75) = Ư(5) = {1; 5}