Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c/
$6n+2\vdots 2n-1$
$3(2n-1)+5\vdots 2n-1$
$\Rightarrow 5\vdots 2n-1$
$\Rightarrow 2n-1\in Ư(5)$
$\Rightarrow 2n-1\in \left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in \left\{1; 0; 3; -2\right\}$
Câu a/
$2n-3\vdots n+1$
$2(n+1)-5\vdots n+1$
$5\vdots n+1$
$\Rightarrow n+1\in Ư(5)$
$\Rightarrow n+1\in \left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in \left\{0; -2; 4; -6\right\}$
a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1
Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6
Do m và n nguyên tố cùng nhau nên ta được như sau:
- Nếu m=1 thì a=42 và n=5 thì b=210
- Nếu m=5 thì a=210 và n=1 thì b=42
b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}
c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d
3(2n+1) chia hết cho d và (6n+5) chia hết cho d
(6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2
Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1
Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)
để A có giá trị là số nguyên thì (3n+9) phải chia hết cho(n-4)
n-4 chia hết cho n-4
suy ra 3(n-4) cũng chia hết cho n-4
Vậy 3n-12 chia hết cho n-4
Suy ra (3n+9)-(3n-4) chia hết cho n-4
suy ra 13 chia hết cho n-4
n-4 thuộc tập hợp ƯC của 13
Bạn tự làm tiếp nhé!!!( lập bảng hay không đều được)
Để A là số nguyên thì 42 phải chia hết cho 6n và n thuộc Z
=> 6n thuộc Ư(42)
Ư(42) = {1;2;3;6;7;14;21;42;- 1;- 2;- 3;- 6;- 7;- 14;- 21;- 42}
=> n thuộc {1;7;-1;-7} (42 : 6 = 7)
Vậy n thuộc {1;7;-1;-7}
Bài 1:
a: Để A là số nguyên thì n+7 chia hết cho 3n-1
=>3n+21 chia hết cho 3n-1
=>3n-1+22 chia hết cho 3n-1
mà n là số nguyên
nên \(3n-1\in\left\{-1;2;11;-22\right\}\)
=>\(n\in\left\{0;1;4;-7\right\}\)
b: Để B là số tự nhiên thì \(3n+2⋮4n-5\) và 3n+2/4n-5>=0
=>\(\left\{{}\begin{matrix}12n+8⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12n-15+23⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-5\in\left\{1;-1;23;-23\right\}\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow n=7\)
6n-5 chia hết cho 2n+1
=> 3(2n+1)-8 chia hết cho 2n+1
=> 8 chia hết cho 2n+1
=> 2n+1 thuộc Ư(8)={1;-1;2;-2;4;-4;8;-8}
Với n nguyên => 2n+1 là số lẻ
Do đó 2n+1 thuộc {1;-1}
=> 2n thuộc {0;-2}
=> n thuộc {0;-1}
Ta có:
6n - 5 = 6n + 3 - 8 = 3(2n + 1) - 8
Để (6n - 5) ⋮ (2n + 1) thì 8 ⋮ (2n + 1)
⇒ 2n + 1 ∈ Ư(8) = {-8; -4; -2; -1; 1; 2; 4; 8}
⇒ 2n ∈ {-9; -5; -3; -2; 0; 1; 3; 7}
Mà 2n là số chẵn
⇒ 2n ∈ {-2; 0}
⇒ n ∈ {-1; 0}