Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hệ trên tương đương với
\(\hept{\begin{cases}x+y+xy=m\\xy\left(x+y\right)=3m-9\end{cases}}\) (1)
Đặt \(S=x+y;P=xy\)
\(\hept{\begin{cases}S+P=m\\SP=3m-9\end{cases}}\)
Do đó S và P là 2 nghiệm của pt \(t^2-mt+3m-9=0\) (2)
Để (1) có 2 nghiệm x, y thì (2) phải có nghiệm t là S và P
Ta có \(\Delta_t=\left(-m\right)^2-4.1.\left(3m-9\right)=m^2-12m+36=\left(m-6\right)^2\ge0\)
Như vậy với mọi m thì (2) luôn có nghiệm
Hay với mọi m thì (1) luôn có nghiệm
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
\(\hept{\begin{cases}2x+y=2m-1\\x-y=m-5\end{cases}}\)
Cộng vế theo vế ta được: \(2x+x=2m+m-1-5\Rightarrow3x=3m-4\Rightarrow x=\frac{3m-4}{3}\)
Thay x vào pt x - y = m - 5 ta suy ra \(y=\frac{11}{3}\)
Thay x, y vào pt \(\frac{1}{x+y}+\frac{1}{x+2}=0\) ta được:
\(\frac{1}{\frac{3m-4}{3}+\frac{11}{3}}+\frac{1}{\frac{3m-4}{3}+2}=0\)
\(\Rightarrow\frac{1}{\frac{3m+7}{3}}+\frac{1}{\frac{3m+2}{3}}=0\)
\(\Rightarrow\frac{3}{3m+7}+\frac{3}{3m+2}=0\)
\(\Rightarrow3\left(3m+2\right)+3\left(3m+7\right)=0\)
\(\Rightarrow m=-\frac{3}{2}\)
Vậy m = -3/2
Đk để hpt luôn có nghiệm duy nhất (x;y) \(\frac{4}{1}\ne\frac{3}{2}\) (luôn đúng)
\(HPT\Leftrightarrow\hept{\begin{cases}4x-3y=m-10\\4x+8y=12m+12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}11y=11m+22\\x+2y=3m+3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=3m+3-2y\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{33m+33-22m-44}{11}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{11m+22}{11}\\x=\frac{11m-11}{11}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}x=m-1\\y=m+2\end{cases}}\)
Vậy vơi mọi m thì hpt có nghiệm duy nhất (x;y)=(m-1;m+2)
Ta có:\(x^2+y^2=\left(m-1\right)^2+\left(m+2\right)^2\)
\(=m^2-2m+1+m^2+4m+4\)
\(=2m^2+2m+5=2\left(m^2+m+\frac{5}{2}\right)\)
\(=2\left(m^2+m+\frac{1}{4}+\frac{9}{4}\right)=2\left(m+\frac{1}{2}\right)^2+\frac{9}{2}\ge\frac{9}{2}\)
Để x2+y2 nhỏ nhất <=> \(2\left(m+\frac{1}{2}\right)^2\) nhỏ nhất <=> m+1/2=0 <=> m=-1/2