Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(xy^2+2xy+x=32y\)
\(\Leftrightarrow x\left(y^2+2y+1\right)=32y\)
\(\Leftrightarrow x=\frac{32y}{y^2+2y+1}\)
\(\Leftrightarrow\frac{32y}{\left(y+1\right)^2}\)
\(\Leftrightarrow x=\frac{32y}{y+1}-\frac{32y}{\left(y+1\right)^2}\)
Để x là số nguyên dương thì
\(\left(y+1\right)^2\inƯ_{\left(32\right)}\)và\(\left(y+1\right)^2\)là số chính phương
\(\Rightarrow\left(y+1^2\right)=\left\{1;4;16\right\}\)
\(\Leftrightarrow y+1=\left\{1;2;4\right\}\)
\(\Leftrightarrow y=\left\{0;1;3\right\}\)
Vì y là số nguyên dương
Nên: \(\hept{\begin{cases}y=1\Rightarrow x=8\\y=3\Rightarrow x=6\end{cases}}\)
Vậy x = 8; y = 1
hoặc x = 6; y = 3
# Chúc bạn học tốt #
Bạn có thể giải thích rõ dòng: 4 và 5 không. Mình thấy nó chưa được chính xác.
\(xy^2+2xy+x=32y\)
\(x\left(y+1\right)^2=32y\)
\(\Rightarrow x=\frac{32y}{\left(y+1\right)^2}\)
Vì \(\left(y,\left(y+1\right)^2\right)=1\)và \(x\inℤ\)\(\Rightarrow\left(y+1\right)^2\inƯ\left(32\right)=Ư\left(2^5\right)=\left\{2^2;2^4\right\}\)
\(Khi\left(y+1\right)^2=2^2=4\Rightarrow\orbr{\begin{cases}y+1=2\\y+1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=-3\end{cases}}\)
\(\cdot y=1\Rightarrow x=\frac{32.1}{4}=8\)
\(\cdot y=-3\Rightarrow x=\frac{32.\left(-3\right)}{4}=-24\)
\(Khi\left(y+1\right)^2=2^4=16\Rightarrow\orbr{\begin{cases}y+1=4\\y+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=3\\y=-5\end{cases}}}\)
\(\cdot y=3\Rightarrow x=\frac{32.3}{16}=6\)
\(\cdot y=-5\Rightarrow x=\frac{32.\left(-5\right)}{16}=-10\)
Vậy nghiệm phương trình \(\left(x;y\right)=\left(8;1\right);\left(-24;-3\right);\left(6;3\right);\left(-10;-5\right)\)
X(y3 + 2y + 1) = 32y
Vì (y3 + 2y + 1; y) = 1 nen 32 \(⋮\)chia hết cho y3 + 2y + 1.
Đến đây tự giải nhé.
ủa bạn cái đoạn \(\left(y^3+2y+1;y\right)=1\) dấu chấm phẩy “;” nghĩa là sao ?
\(x^2-2xy-3y^2=3x-y+2\)
\(\Leftrightarrow x^2-2xy-3x-3y^2+y-2=0\)
\(\Leftrightarrow x^2-x\left(2y+3\right)-3y^2+y-2=0\)
\(\Leftrightarrow4x^2-4x\left(2y+3\right)+\left(2y+3\right)^2-\left(2y+3\right)^2-12y^2+4y-8=0\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-4y^2-12y-9-12y^2+4y-8=0\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-16y^2-8y-17=0\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-\left(16y^2+8y+1\right)=16\)
\(\Leftrightarrow\left(2x-2y-3\right)^2-\left(4y+1\right)^2=16\)
\(\Leftrightarrow\left(2x-6y-4\right)\left(2x+2y-2\right)=16\)
\(\Leftrightarrow\left(x-3y-2\right)\left(x+y-2\right)=4\)
Đến đây bn tự giải nha
đoạn cuối là \(\Leftrightarrow\left(x-3y-2\right)\left(x+y-1\right)=4\)
a.
\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)
Do y và y+1 nguyên tố cùng nhau \(\Rightarrow32⋮\left(y+1\right)^2\)
\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)
\(\Rightarrow...\)
b.
\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)
\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)
Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)
\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)
Lại có:
\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)
\(\Rightarrow4b+1⋮d\) (2)
(1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau
Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)
Ta có: 2xy+x+y=83\(\Rightarrow\)4xy+2x+2y=166\(\Rightarrow\)(2x+1) (2y+1)=167\(\Rightarrow\)x,y \(\in\)(0;83), (83;0)
Vì x,y nguyên dương nên ko tồn tại x,y
ta có:\(x+2xy+y=83\)
\(\Leftrightarrow x\left(1+2y\right)+\frac{1}{2}\left(1+2y\right)=\frac{167}{2}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(1+2y\right)=\frac{167}{2}\)
\(\Leftrightarrow\left(2x+1\right)\left(2y+1\right)=167=1.167=167.1\) (vì x,y>0)
với: \(\hept{\begin{cases}2x+1=1\\2y+1=167\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=83\end{cases}}}\)
với \(\hept{\begin{cases}2x+1=167\\2y+1=1\end{cases}\Rightarrow\hept{\begin{cases}x=83\\y=0\end{cases}}}\)
Vậy (x;y)={ (0;83) ; (83;0)}
\(\Leftrightarrow2xy-6x-5y=18\)
\(\Leftrightarrow2x\left(y-3\right)-5\left(y-3\right)=33\)
\(\Leftrightarrow\left(2x-5\right)\left(y-3\right)=33\)
Phương trình ước số cơ bản
\(xy^2+2xy+x=32y\)
\(\Leftrightarrow x\left(y^2+2y+1\right)=32y\)
\(\Leftrightarrow x=\dfrac{32y}{y^2+2y+1}\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)
\(\Leftrightarrow x=\dfrac{32}{y+1}-\dfrac{32}{\left(y+1\right)^2}\)
Để x nguyên dương thì
\(\left(y+1\right)^2\inƯ\left(32\right)\) và \(\left(y+1\right)^2\) là số chính phương
=> \(\left(y+1\right)^2=\left\{1;4;16\right\}\)
\(\Leftrightarrow y+1=\left\{1;2;4\right\}\)
\(\Leftrightarrow y=\left\{0;1;3\right\}\) vì y nguyên dương nên: \(\left[{}\begin{matrix}y=1\Rightarrow x=8\\y=3\Rightarrow x=6\end{matrix}\right.\)
Vậy(x;y) = {8;1) ; (6;3)
Có thể giải thick cho mik dòng thứ 3 đc không bn