\(a^2+\sqrt{8a+56}\)là một số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

Ta có \(\sqrt{8a^2+56}\)\(\sqrt{8\left(a^2+7\right)}\)\(\sqrt{8\left(a^2+ab+2bc+2ca\right)}\)=2. \(\sqrt{2\left(a+b\right)\left(a+2c\right)}\)

\(\le\) 2(a+b)+(a+2c) = 3a+2b+2c

tương tự \(\sqrt{8b^2+56}\)\(\le\) 2a+3b+2c

\(\sqrt{4c^2+7}\) =\(\sqrt{4c^2+ab+2ac+2bc}\)\(\sqrt{\left(a+2c\right)\left(b+2c\right)}\)\(\le\)(a+b+4c)/2

mẫu số \(\le\)3a+2b+2c+2a+3b+2c+a/2+b/2+2c=(11a+11b+12c)/2

 \(\Rightarrow\)  Q\(\ge\) 2

dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}ab+2bc+2ca=7\\2\left(a+b\right)=a+2c=b+2c\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}a=b=1\\c=1,5\end{cases}}\)

Vây...

15 tháng 8 2020

a) ta có với n nguyên dương n2+n+1=n2+2n+1-n=(n+1)2-n

như vậy có n2<n2+n+1<n2+2n+1 hay n2<n2+n+1<(n+1)2

mà n2 và (n+1)2 là 2 số chính phương liên tiếp

=> n2+n+1 không là số chính phương với mọi n nguyên dương (đpcm)

17 tháng 7 2021

nko tồn tại

13 tháng 6 2021

Bài này là đề tuyển sinh vào 10 của hà nội năm 2012 nếu mình không nhớ nhầm.

Bạn tìm trên mạng nhé.

13 tháng 6 2021

Không thấy bạn ơi