Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
n có dạng 2k, 2k+1
nếu n có dạng 2k thì p= (n-1)(n+2)/2=(2k-1).(2k+2)/2=(2k-1)(k+1) mà p là số nguyên tố suy ra
\(\orbr{\begin{cases}2k-1=1\\k+1=1\end{cases}\Rightarrow\orbr{\begin{cases}2k=2\\k=0\end{cases}\Rightarrow}\orbr{\begin{cases}k=1\\k=0\end{cases}\Rightarrow}\orbr{\begin{cases}n=2\\n=0\end{cases}\Rightarrow}\orbr{\begin{cases}p=2\left(N\right)\\p=-1\left(L\right)\end{cases}}}\)
nếu n có dạng 2k+1 thì p= (n-1)(n+2)/2=k.(2k+3) mà p là số nguyên tố suy ra
\(\orbr{\begin{cases}k=1\\2k+3=1\end{cases}\Rightarrow\orbr{\begin{cases}k=1\\2k=-2\end{cases}\Rightarrow}\orbr{\begin{cases}k=1\\k=-1\end{cases}\Rightarrow}\orbr{\begin{cases}n=3\\n=-1\end{cases}\Rightarrow}\orbr{\begin{cases}p=5\left(N\right)\\p=-1\left(L\right)\end{cases}}}\)
vậy n=2 và n=3 thì p là số nguyên tố hay p=5,p=3 là số nguyên tố có dạng (n-1)(n+2)/2
Câu hỏi của Davids Villa - Toán lớp 6 - Học toán với OnlineMath
Xem bài 1 tai jđây nhé ! mk ngại viết
Bài 1:
Gọi p là số nguyên tố cần tìm và \(p=a+b=c-d\)với \(a,b,c,d\)là các số nguyên tố ,\(c>d\)
Vì \(p=a+b>2\)nên p là số lẻ
\(\Rightarrow a+b\)và \(c-d\)là các số lẻ
Vì \(a+b\)là số lẻ nên một trong hai số \(a,b\)là số chẵn ,giả sử b chẵn .Vì b là số nguyên tố nên \(b=2\)
Vì \(c-d\)là số lẻ nên một trong hai số \(c,d\)là số chẵn .Vì \(c,d\)là các số nguyên tố \(c>d\)nên d là số chẵn \(\Rightarrow d=2\)
Do vậy :\(p=a+2=c-2\Rightarrow c=a+4\)
Ta cần tìm số nguyên tố a để \(p=a+2\)và \(c=a+4\)cũng là số nguyên tố
Vậy số nguyên tố cần tìm là 5: với \(5=3+2=7-2\)
Bài 2 :
Từ \(p=\left(n-2\right)\left(n^2+n-5\right)\)suy ra \(n-2\) và \(n^2+n-5\)là ước của p
Vì p là số nguyên tố nên hoặc \(n-2=1\)hoặc \(n^2+n-5=1\)
Nếu \(n-2=1\)thì \(n=3\)
Khi đó \(p=1.\left(3^2+3-5\right)=7\)là số nguyên tố (thảo mãn)
Nếu \(n^2+n-5=1\Leftrightarrow n^2+n=6\Leftrightarrow n\left(n+1\right)\)\(=2.3\Rightarrow n=2\)
Khi đó \(p=\left(2-2\right).1=0\)không là số nguyên tố
Vậy \(n=3\)
Chúc bạn học tốt ( -_- )
* Với \(m\le2\)thì từ (1) suy ra \(n^3-5n+10=2^m\le2^2\Rightarrow n^3-5n+6\le0\)(2)
Mặt khác do \(n\inℕ^∗\)nên \(n^3-5n+6>0,\)điều này mâu thuẫn với (2). Vậy \(m>2\).
* Với \(m=3\)thì thay vào (1) ta có: \(n^3-5n+10=2^3\Leftrightarrow\left(n^3-2n^2\right)+\left(2n^2-4n\right)-\left(n+2\right)=0\)
\(\Leftrightarrow\left(n-2\right)\left(n^2+2n-1\right)=0\)
Do \(n\inℕ^∗\)nên \(n^2-2n-1>0,\)suy ra \(n-2=0\Leftrightarrow n=2\)
* Với \(m\ge4\)thì biến đổi (1) thành \(\left(n-2\right)\left(n^2+2n-1\right)=8\left(2^{m-3}-1\right)\)(3)
Nhận thấy: \(\left(n^2+2n-1\right)-\left(n-2\right)=n^2+n+1=n\left(n+1\right)+1\)là số lẻ và \(n\inℕ^∗\),
nên hai số \(n^2+2n-1\)và \(n-2\)là hai số tự nhiên khác tính chẵn lẻ. Do đó từ (3) xảy ra 2 khả năng
a)\(\hept{\begin{cases}n-2=8\\n^2+2n-1=2^{m-3}-1\end{cases}\Leftrightarrow}\hept{\begin{cases}n=10\\2^{m-3}=120\end{cases}}\)
Vì \(2^{m-3}\)là số tự nhiên có số tận cùng khác 0 nên \(2^{m-3}\ne120\). Do vậy trường hợp này không xảy ra.
b)\(\hept{\begin{cases}n-2=2^{m-3}-1\\n^2+2n-1=8\end{cases}\Leftrightarrow}\hept{\begin{cases}2^{m-3}=n-1\\n^2+2n-9=0\end{cases}}\)
Do phương trình \(n^2+2n-9=0\)không có nghiệm tự nhiên nên trường hợp này cũng không xảy ra.
Vậy có một cặp số nguyên dương duy nhất thỏa mãn là \(\left(m;n\right)=\left(3;2\right).\)
Cách khác : còn có thể xét các trường hợp của \(n\left(n=1;n\ge2\right)\)trước sau đó mới xét \(m\).
d) Ta có: \(n^2+5n+9⋮n+3\)
\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)
mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)
nên \(3⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(3\right)\)
\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{-2;-4;0;-6\right\}\)
Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)
d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3
⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3
⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3
mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3
nên 3⋮n+33⋮n+3
⇔n+3∈Ư(3)⇔n+3∈Ư(3)
⇔n+3∈{1;−1;3;−3}
n= 1 bn nhá !!!!!!!!!!!!
chúc bn học tốt