Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 2n+1 là số chính phương lẻ nên 2n+1 : 8 dư 1
=> 2n chia hết cho 8
=> n chia hết cho 4
=> n chẵn
=> 3n chẵn
=> 3n+1 lẻ
=> 3n+1 chia 8 dư 1
=> 3n chia hết cho 8
=> n chia hết cho 8 (1)
Có: 3n+1 là số chính phương => 3n+1 chia 5 dư 0;1;4
=> 3n chia 5 dư 4;3 hoặc chia hết cho 5
=> n chia 5 dư 3;1 hoặc chia hết cho 5
- Xét n : 5 dư 3 => 2n+1 chia 5 dư 2 (Loại)
- Xét n : 5 dư 1 => 2n+1 chia 5 dư 3 (Loại)
- Xét n chia hết cho 5 => 2n+1 chia 5 dư 1 (Thỏa mãn)
=> n chia hết cho 5 (2)
Từ (1) và (2) suy ra n chia hết cho 40
Ta tìm được n=40 để 2n+1 và 3n+1 đều là số chính phương
P/s: Vậy n=40 chỉ là số nguyên dương nhỏ nhất thỏa mãn đề bài
1. Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
ko biet thi len google ma hoi nhe minh cung ko biet bai nay
Với \(n=1\) thì \(A=2\) không là SCP.
Với \(n=2\) thì \(B=32\) không là SCP.
Với \(n>2\) thì ta có \(A=n^2-n+2< n^2\) và \(A=n^2-n+2>n^2-2n+1=\left(n-1\right)^2\).
Do đó \(\left(n-1\right)^2< A< n^2\) nên A không thể là số chính phương.
Vậy, không tồn tại số nguyên dương \(n\) nào thỏa ycbt.
Để \(n^2+2n+12\) là số chính phương
\(\Rightarrow n^2+2n+12=t^2\left(t\in Z^{\text{*}}\right)\)
\(\Rightarrow t^2-\left(n^2+2n+1\right)=11\)
\(\Rightarrow t^2-\left(n+1\right)^2=11\)
\(\Rightarrow\left(t+n+1\right)\left(t-n-1\right)=11\)
Dễ thấy: \(t+n+1>t-n-1\forall t,n\in Z^{\text{*}}\)
\(\Rightarrow\hept{\begin{cases}t+n+1=11\\t-n-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}t=6\\n=4\end{cases}}\)(thỏa)
Vậy \(n=4\) thì \(n^2+2n+12\) là SCP