Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt: \(\frac{\left(n-23\right)}{n+89}=\frac{a^2}{b^2}\)(với a,b là 2 số nguyên dương và (a,b)=1)).
Gọi d=(n-23,n+89)\(\Rightarrow n+89-\left(n-23\right)=112⋮d\). Do đó d chỉ có thể có các ước nguyên tố là 2 và 7.
Nếu d chia hết cho 7 thì: Đặt n=7k+2 ( với k là số nguyên dương). Suy ra: \(\frac{\left(n-23\right)}{n+89}=\frac{7k-21}{7k+91}=\frac{k-3}{k+13}\).
Đến đây xét vài trường hợp nữa bài này có dạng tìm k biết \(k+a,k+b\) đều là số chính phương.
Đặt \(a-b=x;b-c=y;c-a=z\)
\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)
Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)
\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)
\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)
a) ta có với n nguyên dương n2+n+1=n2+2n+1-n=(n+1)2-n
như vậy có n2<n2+n+1<n2+2n+1 hay n2<n2+n+1<(n+1)2
mà n2 và (n+1)2 là 2 số chính phương liên tiếp
=> n2+n+1 không là số chính phương với mọi n nguyên dương (đpcm)
Để \(n^2+2n+12\) là số chính phương
\(\Rightarrow n^2+2n+12=t^2\left(t\in Z^{\text{*}}\right)\)
\(\Rightarrow t^2-\left(n^2+2n+1\right)=11\)
\(\Rightarrow t^2-\left(n+1\right)^2=11\)
\(\Rightarrow\left(t+n+1\right)\left(t-n-1\right)=11\)
Dễ thấy: \(t+n+1>t-n-1\forall t,n\in Z^{\text{*}}\)
\(\Rightarrow\hept{\begin{cases}t+n+1=11\\t-n-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}t=6\\n=4\end{cases}}\)(thỏa)
Vậy \(n=4\) thì \(n^2+2n+12\) là SCP