Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^m-2^n=256=2^8=>2^n\left(2^{m-n}-1\right)=2^8\left(1\right)\)
vì m khác n ,nên ta có:
+)nếu m-n=1 thì từ (1) ta có 2^n(2-1)=2^8
=>n=8;m=9
+)nếu m-n>2 thì 2^m-n -1 là 1 số lẻ lớn hơn 1 ,do đó vế trái của (1) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố,còn vế phải của (1) chỉ chứa thừa số nguyên tố 2.Mâu thuẫn
Vậy n=8;m=9 là đáp số duy nhất
2^m + 2^n = 2^(m + n)
<=> 2^m = 2^(m + n) - 2^n
<=> 2^m = 2^n(2^m - 1)
<=> 2^(m - n) = 2^m - 1 (1)
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2).
=>2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4).
(2) và (4) cho ta m = n và phương trình trở thành
2^(m + 1) = 2^(2m)
<=> m + 1 = 2m
<=> m = 1
Vậy phương trình có nghiệm m = n = 1.
b, Vì \(2^m-2^n=256>0\) nên m >n
Đặt m-n=d (d >0)
Ta có :
\(2^m-2^n=2^n.\left(2^d-1\right)=256=2^8.1\)
=> 2n =28 và 2d-1=1
=>n=8 và d=1
=> m=1+8=9
Vậy m=9, n=8
Bài 3 : Tìm m, n nguyên dương thõa mãn :
a,\(2^m\) + \(2^n\) = \(2^{m+n}\)
b, \(2^m\) - \(2^n\) =256
a, 2m + 2n = 2m+n = 2m . 2n
mà 2m + 2n luôn \(\le\) 2m . 2n vì tổng luôn nhỏ hơn tích
và 2m . 2n = 2m + 2n chỉ khi 2m = 2n = 2m+n
=> m = n = 1
b, 256 = 28
ta có 2m - 2n = 256
=> 2m - 2n = 28
=> m \(\ge\) 9
m = 9 khi 2n = 28
=> m = 9; n = 8
THỎA MÃN ĐỀ BÀI
CHÚC BN HC TỐT
Vì kết quả là số nguyên dương nên m > n > 0.
Đặt m - n = d
Ta có
\(2^m-2^n=256\)
\(2^n.\left(2^d-1\right)=2^8\)
\(2^n.\left(2^d-1\right)=2^8.1\)
\(2^n.\left(2^d-1\right)=2^8.\left(2^1-1\right)\)
Do đó n = 8 và d = 1 => m = 9
Vậy m = 9 và n = 8
Giải thích thêm bài Đinh tuấn Việt: do m; n nguyên dương và m > n nên d \(\ge\) 1
=> 2d - 1 là số lẻ mà 256 = 28
=> 2n .(2d - 1) = 28. 1 => ....
Ta có: \(2^m-2^n=256\)
\(\Rightarrow2^n.\frac{2^m}{2^n}-2^n=256\)
VÌ 2m - 2n = 256
=> 2m > 2n
=> m > n
\(\Rightarrow2^n.\left(2^{m-n}-1\right)=256\)
\(\Rightarrow2^n.\left(2^{m-n}-1\right)=2^8.1\)
VÌ 2m-n - 1 luôn là số lẻ
=> 2m-n - 1 = 1
và 2n = 28
=> n = 8 ( thỏa mãn )
=> m = 9 ( thỏa mãn )
Vậy: m = 9 và n = 8
2m-2n=2n(2m-n-1)=256=28 (1)
ta có: m\(\ne\)n.Từ đó ta có 2 trường hợp:
m-n=1 và m-n\(\ge\)2 (vì m,n>0)
a,Nếu m-n=1 thì từ (1) ta có:
2n(2-1)=28.Suy ra n=8, m=9.
b, Nếu m-n\(\ge\)2 thì 2m-n-1 là một số lẻ lớn hơn 1 nên vế trái của (1) chứa thừa số nguyên tố lẻ khi phân tích ra thừa số nguyên tố.Trong khi đó vế phải của (1) là 28 chỉ chứa thừa số nguyên tố 2 nên xảy ra điều vô lý.
Vậy n=8,m=9
có vẻ hơi sao sao về bài này....