Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì mẫu số lũy thừa k của cơ số lớn hơn 1000 tăng nhanh hơn tử số với lũy thừa 2 (luôn dương) của k khi k tăng.
Vì k là số nguyên (âm, dương và số 0), nên khi số nguyên k nhỏ nhất, thì phân số trên đạt giá trị lớn nhất. Tức là k= \(-\infty\)
+) Với k = 1 thì dãy trên có 5 số nguyên tố là 2,3,5,7,11.
+) Với k = 0 thì dãy trên có 4 số nguyên tố là 2,3,5,7.
+) Với k \(\ge\) 2 thì các số của dãy trên đều không nhỏ hơn 3 và trong 10 số đó có 5 số chẵn là hợp số và 5 số lẻ liên tiếp, trong các số lẻ này có ít nhất một số khác 3 mà chia hết cho 3. Do đó số các số nguyên tố không vượt quá 4.
Vậy k = 1 thì dãy chứa nhiều số nguyên tố nhất.
a, Với k ≥ 2 thì 7k có ít nhất 3 ước là 1,7,7k nên 7k là hợp số ( không thỏa mãn).
Với k = 1 thì 7k = 7 là số nguyên tố.
Vậy k = 1.
b, k chia cho 5 có thể dư 0,1,2,3,4.
Với k chia cho 5 dư 1 thì k+14 ⋮ 5 và k+14 > 5 nên k+14 là hợp số ( loại).
Với k chia cho 5 dư 2 thì k+8 ⋮ 5 và k+8 > 5 nên k+8 là hợp số ( loại).
Với k chia cho 5 dư 3 thì k+12 ⋮ 5 và k+12 > 5 nên k+12 là hợp số ( loại).
Với k chia cho 5 dư 4 thì k+6 ⋮ 5 và k+6 > 5 nên k+6 là hợp số ( loại).
Với k chia hết cho 5 và k > 5 thì k là hợp số (loại )
Với k = 5. Thử thấy 5,11,13,17,19 đều là số nguyên tố.
Vậy k = 5.