K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TA
16 tháng 12 2023
1) Gọi hai số cần tìm là a2 và b2(a,b lớn hơn hoặc bằng 2)
Vì a2+ b2= 2234 là số chẵn -> a, b cùng chẵn hoặc cùng lẻ
Mà chỉ có một số nguyên tố chẵn duy nhất là 2 -> hai số đó cùng lẻ
a2+ b2 = 2234 không chia hết cho 5
Giả sử cả a2, b2 đều không chia hết cho 5
-> a2,b2 chia 5 dư 1,4 ( vì là số chính phương)
Mà a2+ b2 = 2234 chia 5 dư 4 nên o có TH nào thỏa mãn -> Giả sử sai
Giả sử a=5 -> a2= 25
b2= 2209
b2= 472
-> b=47
Vậy hai số cần tìm là 5 và 47
SN
2
Ta có: \(a^3+b^3+3\text{a}b-1\)
= \(\left(a+b\right)^3-3ab\left(a+b\right)+3ab-1\)
\(=\left[\left(a+b\right)^3-1\right]-3ab\left(a+b-1\right)\)
\(=\left(a+b-1\right)\left[\left(a+b\right)^2+\left(a+b\right)+1-3ab\right]\)
\(=\left(a+b-1\right)\left(a^2+b^2-ab+a+b+1\right)\)
Xét: \(a^3+b^3+3\text{a}b-1\) là số nguyên tố với a; b là số nguyên dương
+) Th1: a + b - 1 = 1 và \(a^2+b^2-ab+a+b+1\) là số nguyên tố
<=> a + b = 2 và 7 - 3ab là số nguyên tố
Vì a; b nguyên dương nên a + b = 2 => a = b = 1 => 7 - 3ab = 7 - 3 = 4 không là số nguyên tố
=> Loại
+) Th2: \(a^2+b^2-ab+a+b+1\) = 1 và a + b - 1 là số nguyên tố
Ta có: \(a^2+b^2-ab+a+b+1=1\)
<=> \(a^2+\left(1-b\right)a+b^2+b=0\)
<=> \(a^2+2a\frac{\left(1-b\right)}{2}+\frac{\left(1-b\right)^2}{4}-\frac{1-2b+b^2}{4}+b^2+b=0\)
<=> \(\left(a+\frac{1-b}{2}\right)^2+\frac{3b^2+6b-1}{4}=0\)(1)
Với b nguyên dương ta có: \(b\ge1\Rightarrow\frac{3b^2+6b-1}{4}\ge2>0\)
=> (1) vô nghiệm
=> Loại
Vậy không tồn tại a; b nguyên dương