Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TH1) Với n = 6k
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+1\right)\left(12k+1\right)\) không chia hết cho 6
=> Loại
TH2) Với n = 6k+1
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+2\right)\left(12k+3\right)⋮6\)
=> \(A=\frac{\left(6k+2\right)\left(12k+3\right)}{6}=\left(3k+1\right)\left(4k+1\right)\)là số chính phương
Lại có: ( 3k + 1 ; 4k + 1 ) = ( 3k + 1 ; k ) = ( 2k + 1 ; k ) = ( k + 1 ; k ) = ( k ; 1 ) = 1
=> 3k + 1 và 4k + 1 đồng thời là 2 số chính phương
+) Với k \(\equiv\)\(1,3,5,7\)(mod 8 ) => 4k + 1 không là số cp
+) Với k \(\equiv\)2; 4; 6 ( mod 8) => 3k + 1 không là số chính phương
=> k \(\equiv\)0 ( mod 8) => k = 8h
=> Tìm h bé nhất để 24h + 1 và 32h + 1 là số chính phương(1)
+) Với h \(\equiv\)\(3,4,6\)( mod7) => 24k + 1 không là số chính phương
+) Với h \(\equiv\)1 (mod 7 ) => 32h + 1 không là số cp
=> h \(\equiv\)0; 2; 5 (mod 7 )
=> h = 7m hoặc h = 7n + 2 hoặc h = 7t + 7 ( với m;n; t nguyên dương )
Nếu m = 1 => h = 7 => 24h + 1 = 169 và 32h + 1 = 225 là hai số chính phương và h nhỏ nhất
=> n = 6k + 1 và k = 8h = 56
=> n = 337
=> A = 38025 là số chính phương
TH3) Với n = 6k + 2
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+3\right)\left(12k+5\right)\)không chia hết cho 6
TH4) Với n = 6k + 3
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+4\right)\left(12k+7\right)\)không chia hết cho 6
TH5) Với n = 6k + 4
ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+5\right)\left(12k+9\right)\)không chia hết cho 6
TH6) Với n = 6k + 5
ta có \(\left(n+1\right)\left(2n+1\right)=\left(6k+6\right)\left(12k+11\right)⋮6\)
=> \(A=\frac{\left(6k+6\right)\left(12k+11\right)}{6}=\left(k+1\right)\left(12k+11\right)\)
mà ( k + 1; 12k + 11 ) = 1
=> k + 1 và 12k + 11 là 2 số chính phương
tuy nhiên 12k + 11 chia 12 dư 11 mà 1 số chính phương chia 12 không dư 11
=> Trường hợp này loại
Vậy n = 337


\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)

Cậu chỉ cần đổi đề bài thành tìm a,b sao cho A là số nguyên là được.
Link chứng minh điều đó ở đây
https://diendantoanhoc.net/topic/71455-cho-ab-nguyen-d%C6%B0%C6%A1ng-ch%E1%BB%A9ng-minh-afraca2b2ab1-la-s%E1%BB%91-chinh-ph%C6%B0%C6%A1ng-n%E1%BA%BFu-a-nguyen/
Gắt vậy :) IMO 1988 :) vào TKHĐ của mình để xem hình ảnh


Không có cặp số nguyên dương
a;b nào thỏa mãn \(3^{a}-3^{b}\) là số chính phươngOlm chào em. Đây là toán nâng cao chuyên đề số chính phương, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Giải:
+ Nếu a < b ta có:
a; b ∈ \(z^{+}\); ⇒ \(3^{a}<3^{b}\) ⇒ \(3^{a}\) - 3\(^{b}\) < 0 (loại) vì số chính phương luôn không âm.
+ Nếu a = b ta có:
3\(^{a}\) = 3\(^{b}\) ⇒ 3\(^{a}\) - 3\(^{b}\) = 0 = 0\(^2\) (thỏa mãn)
+ Nếu a > b; a; b \(\in\) Z\(^{+}\) ta có:
3\(^{a}\) ⋮ 3; 3\(^{b}\) ⋮ 3 ⇒ 3\(^{a}\) - 3\(^{b}\) ⋮ 3. Khi đó theo bài ra ta có:
3\(^{a}\) - 3\(^{b}\) = 3\(^{2c}\) (a; b; c \(\in Z^{+}\)) ⇒ 3\(^{b}\).(3\(^{a-b}\) - 1) = 3\(^{2c}\)
⇒ 3\(^{a-b}\)- 1 là lũy thừa của 3. ⇒ 1 ⋮ 3 (vô lý)
a > b loại
Từ những trường hợp trên ta có: a = b; a; b ∈ Z\(^{+}\)
Kết luận: a = b; a; b ∈ Z\(^{+}\)