Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)=n(n-1)(n+1)(n^2+1)$
Vì $n,n-1,n+1$ là 3 số nguyên liên tiếp nên tích của chúng chia hết cho $3$
$\Rightarrow n^5-n=n(n-1)(n+1)(n^2+1)\vdots 3$
$\Rightarrow n^5-n+2$ chia $3$ dư $2$. Do đó nó không thể là scp vì scp chia $3$ chỉ có dư $0$ hoặc $1$.
Gọi x - 2020 = m2
x - 5 = n2
=> (x - 5) - (x - 2020) = n2 - m2
=> 2015 = n2 - m2 = (n-m). (n+m)
Vì 2015 = 5 . 403 = (-5).(-403) = 1. 2015 = (-1).(-2015)
Trường hợp 1: n - m = 5; n + m = 403 => 2.n = 408 => n = 204 => m = 204 - 5 = 199 => x = 1992 - 2020 =37581 chia hết cho 3=> loại
Trường hợp 2: n - m = 403 ; n + m = 5 => 2n = 408 => n = 204 => m = 204 - 403 = -199 => x = 37581 => loại
các trường hợp còn lại tương tự........
Giả sử \(x^3+x^2+2025\) là số chính phương nhỏ hơn 10000. Ta có phương trình:
\(x^3+x^2+2025 =k^2(k \in N,k^2<10000 \Leftrightarrow
k<100)\)
\(\Leftrightarrow
\)\(2025=k^2-x^2(x+1)\)
\(\Leftrightarrow
\)\(2025=(k-x\sqrt{x+1})(k+x\sqrt{x+1})\)
Mà \(k-x\sqrt{x+1} < k+x\sqrt{x+1}< 100\)(Vì \(k < 100\))
\(\Rightarrow \)\(\left[\begin{array}{}
\begin{cases}
k+x\sqrt{x+1}=81\\
k-x\sqrt{x+1}=25
\end{cases}\\
\begin{cases}
k+x\sqrt{x+1}=75\\
k-x\sqrt{x+1}=27
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
2k=106\\
k-x\sqrt{x+1}=25
\end{cases}\\
\begin{cases}
2k=102\\
k-x\sqrt{x+1}=27
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
k=53\\
53-x\sqrt{x+1}=25
\end{cases}\\
\begin{cases}
k=51\\
51-x\sqrt{x+1}=27
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
k=53\\
x\sqrt{x+1}=28
\end{cases}\\
\begin{cases}
k=51\\
x\sqrt{x+1}=24
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
k=53\\
x^3+x^2-784=0
\end{cases}\\
\begin{cases}
k=51\\
x^3+x^2-576=0
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
k=53\\
x^3+x^2-784=0(PTVN)
\end{cases}\\
\begin{cases}
k=51\\
x^3-8x^2+9x^2-72x+72x-576=0
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\begin{cases}
k=51\\
(x-8)(x^2+9x+72)=0
\end{cases}\)
\(\Leftrightarrow\)\(\begin{cases}
k=51(t/m)\\
\left[\begin{array}{}
x=8(t/m)\\
(x+\frac{9}{2})^2+\frac{207}{4}=0(PTVN)
\end{array} \right.
\end{cases}\)
Vậy chỉ có giá trị \(x=8\) thỏa mãn yêu cầu bài toán.
P/s: Cái c/m vô nghiệm kia mình không biết làm. Chỉ biết bấm máy tính không ra nghiệm nguyên
Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
=a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
=b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.
\(\sqrt{n}-\sqrt{n-1}< \frac{1}{100}\Leftrightarrow\frac{1}{\sqrt{n}-\sqrt{n-1}}>100\Leftrightarrow\sqrt{n}+\sqrt{n-1}>100\left(1\right)\)
Đến đây có thể giải bpt(1) bằng cách chuyển vế \(\sqrt{n-1}>100-\sqrt{n}\), bình phương 2 vế và đưa về \(\sqrt{n}>50,005\). do đó \(n>2500,500025\). Do \(n\in N\)và nhỏ nhất nên n=2501
Cũng có thể ước lượng từ (1) để thấy \(\sqrt{n}\)vào khoảng 50. Với \(n\le2500\)thì \(\sqrt{n}+\sqrt{n-1}\le\sqrt{2500}+\sqrt{2499}< 100\)
Với n=2501 thì \(\sqrt{n}+\sqrt{n-1}=\sqrt{2501}+\sqrt{2500}>100\)
Ta chọn n=2501
a.
\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)
Do y và y+1 nguyên tố cùng nhau \(\Rightarrow32⋮\left(y+1\right)^2\)
\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)
\(\Rightarrow...\)
b.
\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)
\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)
Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)
\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)
Lại có:
\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)
\(\Rightarrow4b+1⋮d\) (2)
(1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau
Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)