Tìm số nguyên a
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(B=3+3^2+3^3+...+3^{120}\)

\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)

\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)

Suy ra B chia hết cho 3 (đpcm)

b) \(B=3+3^2+3^3+...+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)

\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)

\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)

\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)

\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)

Suy ra B chia hết cho 4 (đpcm)

c) \(B=3+3^2+3^3+...+3^{120}\)

\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)

\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)

\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)

\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)

\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)

Suy ra B chia hết cho 13 (đpcm)

26 tháng 12 2021

bài này dễ mà bạn

26 tháng 12 2021

(-4;-3;-2;-1;0;1;2;3;4)

Ko có dấu ngoặc nhọn nên mik xài ngoặc tròn nha

30 tháng 11 2016

b1a c đg bd sai

b2a sai b sai c đg

b3 a 2 b 5

19 tháng 8 2020

a. Vì A thuộc Z 

\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )

b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)

Vì B thuộc Z nên 5 / x - 3 thuộc Z

\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )

c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)

\(=x-2-\frac{2}{x+1}\)

Vi C thuộc Z nên 2 / x + 1 thuộc Z

\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )

22 tháng 5 2018

Theo bài ra ta có:

\(a+b=3\left(a-b\right)=3a-3b.\)

\(\Leftrightarrow a+b+3b=3a\)

\(\Leftrightarrow a+4b=3a\)

\(\Leftrightarrow4b=3a-a=2a\)

\(\Rightarrow a=2b\)

Thay vào ta đươc:

\(2b:b=-\left(2b-b\right)\)

\(\Leftrightarrow2=-b\Rightarrow b=-2\)

\(\Rightarrow a=\left(-2\right).2=-4\)

Vậy \(a=-4;b=-2.\)

18 tháng 3 2018

a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.

TH1: n+1=1 => n=0 => n+3=3 (t/m)

TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)

=> n=0.

b, A không tối giản => ƯCLN(n+3;n-5) >1

=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.

18 tháng 3 2018

Ko có số tự nhiên n thõa mãn điều kiện. k mik nhé nếu muốn hỏi j thêm về câu này thì cứ nhắn tin riêng cho mik

Bài 4:

a: TH1: p=2

\(5p+3=5\cdot2+3=10+3=13\) là số nguyên tố

=>Nhận

TH2: p=2k+1

\(5p+3=5\left(2k+1\right)+3\)

=10k+5+3

=10k+8

=2(5k+4)⋮2

=>Loại

Vậy: p=2

b: TH1: p=3

p+8=3+8=11; p+10=3+10=13

=>Nhận

TH2: p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>Loại

TH3: p=3k+2

p+10

=3k+2+10

=3k+12

=3(k+4)⋮3

=>Loại

Vậy: p=3

c: TH1: p=5

p+2=5+2=7

p+6=5+6=11

p+18=5+18=23

p+24=5+24=29

=>Nhận

TH2: p=5k+1

p+24

=5k+1+24

=5k+25

=5(k+5)⋮5

=>Loại

TH3: p=5k+2

p+18

=5k+2+18

=5k+20

=5(k+4)⋮5

=>Loại

TH4: p=5k+3

p+2=5k+3+2

=5k+5

=5(k+1)⋮5

=>Loại

TH5: p=5k+4

p+6=5k+4+6

=5k+10

=5(k+2)⋮5

=>Loại

Bài 5: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3

=>Loại

=>p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>p+8 là hợp số

Bài 4:

a: TH1: p=2

\(5p+3=5\cdot2+3=10+3=13\) là số nguyên tố

=>Nhận

TH2: p=2k+1

\(5p+3=5\left(2k+1\right)+3\)

=10k+5+3

=10k+8

=2(5k+4)⋮2

=>Loại

Vậy: p=2

b: TH1: p=3

p+8=3+8=11; p+10=3+10=13

=>Nhận

TH2: p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>Loại

TH3: p=3k+2

p+10

=3k+2+10

=3k+12

=3(k+4)⋮3

=>Loại

Vậy: p=3

c: TH1: p=5

p+2=5+2=7

p+6=5+6=11

p+18=5+18=23

p+24=5+24=29

=>Nhận

TH2: p=5k+1

p+24

=5k+1+24

=5k+25

=5(k+5)⋮5

=>Loại

TH3: p=5k+2

p+18

=5k+2+18

=5k+20

=5(k+4)⋮5

=>Loại

TH4: p=5k+3

p+2=5k+3+2

=5k+5

=5(k+1)⋮5

=>Loại

TH5: p=5k+4

p+6=5k+4+6

=5k+10

=5(k+2)⋮5

=>Loại

Bài 5: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3

=>Loại

=>p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>p+8 là hợp số

Bài 4:

a: TH1: p=2

\(5p+3=5\cdot2+3=10+3=13\) là số nguyên tố

=>Nhận

TH2: p=2k+1

\(5p+3=5\left(2k+1\right)+3\)

=10k+5+3

=10k+8

=2(5k+4)⋮2

=>Loại

Vậy: p=2

b: TH1: p=3

p+8=3+8=11; p+10=3+10=13

=>Nhận

TH2: p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>Loại

TH3: p=3k+2

p+10

=3k+2+10

=3k+12

=3(k+4)⋮3

=>Loại

Vậy: p=3

c: TH1: p=5

p+2=5+2=7

p+6=5+6=11

p+18=5+18=23

p+24=5+24=29

=>Nhận

TH2: p=5k+1

p+24

=5k+1+24

=5k+25

=5(k+5)⋮5

=>Loại

TH3: p=5k+2

p+18

=5k+2+18

=5k+20

=5(k+4)⋮5

=>Loại

TH4: p=5k+3

p+2=5k+3+2

=5k+5

=5(k+1)⋮5

=>Loại

TH5: p=5k+4

p+6=5k+4+6

=5k+10

=5(k+2)⋮5

=>Loại

Bài 5: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2

Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3

=>Loại

=>p=3k+1

p+8=3k+1+8

=3k+9

=3(k+3)⋮3

=>p+8 là hợp số