Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(B=3+3^2+3^3+...+3^{120}\)
\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)
\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)
Suy ra B chia hết cho 3 (đpcm)
b) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)
\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)
\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)
\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)
Suy ra B chia hết cho 4 (đpcm)
c) \(B=3+3^2+3^3+...+3^{120}\)
\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)
\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)
\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)
\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)
\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)
Suy ra B chia hết cho 13 (đpcm)

(-4;-3;-2;-1;0;1;2;3;4)
Ko có dấu ngoặc nhọn nên mik xài ngoặc tròn nha

a. Vì A thuộc Z
\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )
b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)
Vì B thuộc Z nên 5 / x - 3 thuộc Z
\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )
c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)
\(=x-2-\frac{2}{x+1}\)
Vi C thuộc Z nên 2 / x + 1 thuộc Z
\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )

Theo bài ra ta có:
\(a+b=3\left(a-b\right)=3a-3b.\)
\(\Leftrightarrow a+b+3b=3a\)
\(\Leftrightarrow a+4b=3a\)
\(\Leftrightarrow4b=3a-a=2a\)
\(\Rightarrow a=2b\)
Thay vào ta đươc:
\(2b:b=-\left(2b-b\right)\)
\(\Leftrightarrow2=-b\Rightarrow b=-2\)
\(\Rightarrow a=\left(-2\right).2=-4\)
Vậy \(a=-4;b=-2.\)

a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.
TH1: n+1=1 => n=0 => n+3=3 (t/m)
TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)
=> n=0.
b, A không tối giản => ƯCLN(n+3;n-5) >1
=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.

Bài 4:
a: TH1: p=2
\(5p+3=5\cdot2+3=10+3=13\) là số nguyên tố
=>Nhận
TH2: p=2k+1
\(5p+3=5\left(2k+1\right)+3\)
=10k+5+3
=10k+8
=2(5k+4)⋮2
=>Loại
Vậy: p=2
b: TH1: p=3
p+8=3+8=11; p+10=3+10=13
=>Nhận
TH2: p=3k+1
p+8=3k+1+8
=3k+9
=3(k+3)⋮3
=>Loại
TH3: p=3k+2
p+10
=3k+2+10
=3k+12
=3(k+4)⋮3
=>Loại
Vậy: p=3
c: TH1: p=5
p+2=5+2=7
p+6=5+6=11
p+18=5+18=23
p+24=5+24=29
=>Nhận
TH2: p=5k+1
p+24
=5k+1+24
=5k+25
=5(k+5)⋮5
=>Loại
TH3: p=5k+2
p+18
=5k+2+18
=5k+20
=5(k+4)⋮5
=>Loại
TH4: p=5k+3
p+2=5k+3+2
=5k+5
=5(k+1)⋮5
=>Loại
TH5: p=5k+4
p+6=5k+4+6
=5k+10
=5(k+2)⋮5
=>Loại
Bài 5: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2
Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3
=>Loại
=>p=3k+1
p+8=3k+1+8
=3k+9
=3(k+3)⋮3
=>p+8 là hợp số

Bài 4:
a: TH1: p=2
\(5p+3=5\cdot2+3=10+3=13\) là số nguyên tố
=>Nhận
TH2: p=2k+1
\(5p+3=5\left(2k+1\right)+3\)
=10k+5+3
=10k+8
=2(5k+4)⋮2
=>Loại
Vậy: p=2
b: TH1: p=3
p+8=3+8=11; p+10=3+10=13
=>Nhận
TH2: p=3k+1
p+8=3k+1+8
=3k+9
=3(k+3)⋮3
=>Loại
TH3: p=3k+2
p+10
=3k+2+10
=3k+12
=3(k+4)⋮3
=>Loại
Vậy: p=3
c: TH1: p=5
p+2=5+2=7
p+6=5+6=11
p+18=5+18=23
p+24=5+24=29
=>Nhận
TH2: p=5k+1
p+24
=5k+1+24
=5k+25
=5(k+5)⋮5
=>Loại
TH3: p=5k+2
p+18
=5k+2+18
=5k+20
=5(k+4)⋮5
=>Loại
TH4: p=5k+3
p+2=5k+3+2
=5k+5
=5(k+1)⋮5
=>Loại
TH5: p=5k+4
p+6=5k+4+6
=5k+10
=5(k+2)⋮5
=>Loại
Bài 5: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2
Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3
=>Loại
=>p=3k+1
p+8=3k+1+8
=3k+9
=3(k+3)⋮3
=>p+8 là hợp số

Bài 4:
a: TH1: p=2
\(5p+3=5\cdot2+3=10+3=13\) là số nguyên tố
=>Nhận
TH2: p=2k+1
\(5p+3=5\left(2k+1\right)+3\)
=10k+5+3
=10k+8
=2(5k+4)⋮2
=>Loại
Vậy: p=2
b: TH1: p=3
p+8=3+8=11; p+10=3+10=13
=>Nhận
TH2: p=3k+1
p+8=3k+1+8
=3k+9
=3(k+3)⋮3
=>Loại
TH3: p=3k+2
p+10
=3k+2+10
=3k+12
=3(k+4)⋮3
=>Loại
Vậy: p=3
c: TH1: p=5
p+2=5+2=7
p+6=5+6=11
p+18=5+18=23
p+24=5+24=29
=>Nhận
TH2: p=5k+1
p+24
=5k+1+24
=5k+25
=5(k+5)⋮5
=>Loại
TH3: p=5k+2
p+18
=5k+2+18
=5k+20
=5(k+4)⋮5
=>Loại
TH4: p=5k+3
p+2=5k+3+2
=5k+5
=5(k+1)⋮5
=>Loại
TH5: p=5k+4
p+6=5k+4+6
=5k+10
=5(k+2)⋮5
=>Loại
Bài 5: p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2
Nếu p=3k+2 thì p+4=3k+2+4=3k+6=3(k+2)⋮3
=>Loại
=>p=3k+1
p+8=3k+1+8
=3k+9
=3(k+3)⋮3
=>p+8 là hợp số
a= -10. HS tự biểu diễn