K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

\(\frac{2^2-1}{2^2}\cdot\frac{3^2-1}{3^2}\cdot\cdot\cdot\cdot\frac{10^2-1}{10^2}=\frac{1.3}{2.2}\cdot\frac{2.4}{3.3}\cdot\cdot\cdot\cdot\frac{9\cdot11}{10\cdot10}=\frac{\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot9\right)\cdot\left(3\cdot4\cdot5\cdot\cdot\cdot\cdot10\cdot11\right)}{\left(2\cdot3\cdot..\cdot10\right)\left(2\cdot3\cdot\cdot\cdot\cdot10\right)}=\frac{11}{2.10}=\frac{11}{20}\)

Nghịch đảo của số đó là 20/11

4 tháng 7 2018

ta có 1-x=-(x-1)

1-x+1=x-1

<=>3=2x

<=>x=2/3

vậy x =2/3

5 tháng 7 2018

Theo bài ra ta có:1-\(\frac{1}{1-x}\)=\(\frac{1}{1-x}\)

Suy ra:\(\frac{1}{1-x}\)=1-

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

14 tháng 8 2017

Với a âm thì :

\(\dfrac{1}{a}\) cũng sẽ luôn luôn âm

Với a dương thì:

\(\dfrac{1}{a}\) cũng sẽ luôn luôn dương

Điều này xảy ra vì 1 là số dương,nếu mẫu là âm thì kq âm,và ngược lại

5 tháng 8 2017

Số nghịch đảo của a = 1/7 là 7

9 tháng 9 2015

1-3/4=1/4

Vậy số nghịch đảo cần tìm là 4.

9 tháng 9 2015

\(1-\frac{3}{4}=\frac{4}{4}-\frac{3}{4}=\frac{1}{4}\)

Số nghịch đảo của \(\frac{1}{4}\) là 4

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a)Ta có: \(2\frac{1}{5} = \frac{{11}}{5}\)

Số nghịch đảo của \(2\frac{1}{5}\) là: \(\frac{5}{{11}}\).

b) Số nghịch đảo của \( - 13\) là: \(\frac{{ - 1}}{{13}}\)

Chú ý: Ta phải chuyển hỗn số về phân số trước khi tìm số nghịch đảo.