Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số tự nhiên n thuộc N sao cho:
n+6 chia hết cho n+2
2n + 3 chia hết cho n-2
3n+1 chia hết cho 11-2n
-Xét hiệu (n + 6) - (n +2)
= n + 6 + n - 2
= 4 (khử n)
Nếu n +6 chia hết cho n+ 2 thì 4 phải chia hết cho n+2..
Suy ra: n + 2 \(_{ }\in\) Ư(4) = { 1 ; 2 ; 4} Mà n+2 \(\ge\) 2 nên n+2 \(\in\) { 2 ; 4}
+ n + 2 = 2
n = 2 - 2
n = 0
+ n + 2 = 4
n = 4 - 2
n = 2
Vậy n\(\in\) { 0 ; 2}
-Xét 2(n -2) \(⋮\) n - 2. Vậy 2(n - 2) = 2n - 4
Xét tổng (2n + 3) + (2n - 4)
= 2n + 3 + 2n - 4
= 7 (khử 2n)
Nếu 2n +3 \(⋮\) n - 2 thì 7 \(⋮\) n - 2.
n- 2 \(\in\) Ư(7) = { 1 ; 7}
+ n - 2 = 1
n = 1+2
n = 3
+n - 2 = 7
n = 7 +2
n = 9
Vậy n \(\in\)
n+6\(⋮\)n+2
n+2\(⋮\)n+2
n+6-n+2\(⋮\)n+2
8\(⋮\)n+2
\(\Rightarrow\)n+2={1,2,4,8}
\(\Rightarrow\)n={-1,0,2,6}
vi n\(\in\)N nen n={0,2.6}
2n+3\(⋮\)n-2
2(n-2)\(⋮\)n-2
2n+3-2(n-2)\(⋮\)n-2
2n+3-2n+4\(⋮\)n-2
7\(⋮\)n-2
\(\Rightarrow\)n-2={1,7}
\(\Rightarrow\)n={3,10}
3n+1\(⋮\)11-2n
2(3n+1)\(⋮\)11-2n
11-2n\(⋮\)11-2n
3(11-2n)\(⋮\)11-2n
2(3n+1)+3(11-2n)\(⋮\)11-2n
6n+2+33-6n\(⋮\)11-2n
35\(⋮\)11-2n
\(\Rightarrow\)11-2n={1,5,7,35}
\(\Rightarrow\)2n={12,16,18,46}
\(\Rightarrow\)n={6,8,9,23}
(3n + 1) chia hết cho (2n+3)
<=> (6n+2) chia hết cho (2n + 3)
<=> 3.(2n+3) - 7 chia hết cho (2n+3)
<=> 7 chia hết cho (2n+3)
<=>(2n +3) thuộc Ư(7)
<=> (2n+3) thuộc {-1; 1; 7; - 7}
Vì n là số tự nhiên => 2n + 3 > 3
vậy 2n + 3 = 7 <=> n = 2
Thử lại: 3.2 +1 = 7 chia hết cho 2n + 3 = 7
Vậy n = 2
(3n+1) chia hết cho (2n+3)
<=> 2n+3 + n-2 chia hết cho (2n+3)
vì 2n+3 chia hết cho (2n+3)
=> n-2 chia hết cho (2n+3)
=> 2(n-2) chia hết cho (2n+3)
2(n-2)=2n-4=2n+3-7
vì 2n+3 chia hết cho (2n+3)
=> 7 chia hết cho (2n+3)
=> 2n+3 ∈ Ư(7) = {±1;±7}
2n +3 = 7 <=> n=2
2n+3 = -7 <=> n=-5
2n+3 = -1 <=> n=-2
2n+3=1<=> n=-1
n∈ {2;-2;-5;-1}
3n+1 chia hết cho 2n+3
=>6n+2 chia hết cho 2n+3
=>6n+9-7 chia hết cho 2n+3
=>7 chia hết cho 2n+3
=>2n+3 thuộc Ư(7)={1;-1;7;-7}
=>n=-1;-2;2;-5
Mà n thuộc N nên: n=2
ta có: (2n+9) chia hết cho (n+1) ( n+1 khác 0)
(n+1) chia hết cho (n+1) => 2.(n+1) chia hết cho ( n+1) <=> (2n=2) chia hết cho (n+1)
=> (2n+9) - (2n+2) chia hết cho (n+1)
<=> 7 chia hết cho (n+1)
=> (n+1) thuộc tập ước của 7 mà n là số tự nhiên=> (n+1)= 1 hoặc 7
=> n = 0 hoặc 6