Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3n+1⋮11-2n\)
\(\Rightarrow2\left(3n+1\right)⋮11-2n\)
\(\Rightarrow6n+2⋮11-2n\)
\(\Rightarrow-3\left(11-2n\right)+35⋮11-2n\)
\(\Rightarrow35⋮11-2n\)
\(\Rightarrow11-2n\inƯ\left(35\right)=\left\{\pm1;\pm5;\pm7;\pm35\right\}\)
\(\Rightarrow n\in\left\{2;3;5;6;8;9;23;-12\right\}\)
a) n + 7 chia hết cho n + 2
n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2
=> n + 2 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Ta có bảng sau :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
b) 9 - n chia hết cho n - 3
9 - n + 3 - 3 chia hết cho n - 3
9 - (n - 3) - 3 chia hết cho n - 3
6 - (n - 3) chia hết cho n - 3
=> 6 chia hết cho n - 3
=> n -3 thuộc Ư(o6) = {1 ; -1 ;2 ; -2 ;3 ; -3 ; 6 ; -6}
Còn lại giống a
c) n2 + n + 17 chia hết cho n + 1
n.(n + 1) + 17 chia hết cho n + 1
=> 17 chia hết cho n + 1
3n + 1 chia hết cho 11 - 2n
=> 2.(3n + 1) chia hết cho 11 - 2n
=> 6n + 2 chia hết cho 11 - 2n
=> -2 - 6n chia hết cho 11 - 2n
=> 11.(-2 - 6n) chia hết cho 11 - 2n
=> -22 - 66n chia hết cho 11 - 2n
=> 11.(-2 - 2n) - 44n chia hết cho 11 - 2n
=> ...............
a)Ta có: n+4 chia hết cho n
Mà n chia hết cho n
=> 4 chia hết cho n
=> n thuộc Ư(4)
=> n thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối đi nha)
Vậy n thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối đi nha).
b)Ta có: n+5 chia hết cho n+1
=> (n+1) +4 chia hết cho n+1
Mà n+1 chia hết cho n+1
=> 4 chia hết cho n+1
=> n+1 thuộc Ư(4)
=> n+1 thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối)
=> n thuộc {0;1;3;-2;-3;-5} (nếu bạn chưa học số âm thì bỏ 3 số cuối)
Vậy n thuộc {0;1;3;-2;-3;-5} (nếu bạn chưa học số âm thì bỏ 3 số cuối)
c) 1. 10n+2 \(⋮\)2n-1
=> 5(2n-1) +7 \(⋮\)2n-1 => 7\(⋮\)2n-1
2. 2n+3\(⋮\)n-2
=> 2(n-2) +7\(⋮\)n-2 => 7\(⋮\)n-2
3. 3n+1 \(⋮\)11-2n
=> 6n+2 \(⋮\)2n-11
=> 3(2n-11) +35\(⋮\)2n-11
=> 35\(⋮\)2n-11
a) vì chia 4 dư 2 nên \(\overline{5b}\)chia 4 dư 2 => b là 0 ; 4 ; 8
nếu b =0 thì 4+3+a+5+0 = 12 +a chia 9 dư 2 => a=8
nếu b =4 thì 4+3+a+5+4 = 16 +a chia 9 dư 2 => a=4
nếu b = 8 thì 4+3+a+5+8 = 20+a chia 9 dư 2 => a = 0 hoặc a=9
cũng 3 năm r chưa lm nên k biết có đúng k
Mk làm mẫu cho 1 phần rùi các câu còn lại làm tương tự nhé
a) \(\frac{3n-2}{n-3}=3+\frac{7}{n-3}\)
Để \(\frac{3n-2}{n-3}\)nguyên thì \(\frac{7}{n-3}\)nguyên
hay \(n-3\)\(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng sau:
\(n-3\) \(-7\) \(-1\) \(1\) \(7\)
\(n\) \(-4\) \(2\) \(4\) \(10\)
Vậy....
Ta có:3n+1 chia hết cho 11-2n
=>3n+1chia hết cho -(2n-11)
=>3n+1 chia hết cho 2n-11
=>2.(3n+1) chia hết cho 2n-11
=>6n+22 chia hết cho 2n-11
=>6n-33+33+22 chia hết cho 2n-11
=>3.(2n-11)+55 chia hết cho 2n-11
=>55 chia hết cho 2n-11
=>2n-11=Ư(55)=(1,5,11,55)
=>2n=(12,16,22,66)
=>n=(6,8,11,33)
Vậy n=6,8,11,33
->11-2n=2n+(-11) 3n+1 chia hết cho 2n+(-11) =>(3n+1)*2=6n+2 chia hết cho 2n+(-11) Mà 6n+(-33) chia hết cho 2n+(-11) (Vì bằng 2n+(-11) nhân với 3) =>6n+2 - (6n+(-33))=35 chia hết cho N=> N thuộc {1;5;7;35} Thử: N=1=>3n+1 ko chia hết cho 11-2n=>loại N=5=>3n+1 chia hết cho 11-2n=>chọn N=7=>3n+1 ko chia hết cho 11-2n=>loại N=35=>3n+1 ko chia hết cho 11-2n=> loại => N=5
Ta có:
\(\dfrac{3n+1}{11-2n}=k,k\inℤ\)
\(\Rightarrow3n+1=k\left(11-2n\right)\\ \Leftrightarrow3n+1=-2kn+11k\)
\(\Rightarrow\left\{{}\begin{matrix}-2k=3\\11k=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}k=\dfrac{-3}{2}\\k=\dfrac{1}{11}\end{matrix}\right.\)
Không tồn tại k thõa mãn bài toán, do đó không tồn tại n thõa mãn bài toán.