Tìm số mệnh đề sai trong những mệnh đề sau

(1). Nếu hàm...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

Đáp án A

Có 2 mệnh đề sai là mệnh đề (3) và mệnh đề (4).

Mệnh đề (3) sai vì nếu hai cực trị của hàm số cùng dấu thì đồ thị hàm số chỉ cắt trục Ox tại một điểm.

Mệnh đề (4) sai lý do tương tự mệnh đề (3).

8 tháng 12 2017

Đáp án C

13 tháng 11 2018

Đáp án A

Hàm số f(x) xác định trên D R
Điểm  x 0
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho  x 0 (a;b) và f( x 0 )>f(x),x (a,b){ x 0 }.

3 tháng 9 2017

Đáp án A

Hàm số f(x) xác định trên D R
Điểm xo
D được gọi là điểm cực đại của hàm số f(x) nếu tồn tại một khoảng (a;b) D sao cho xo (a;b) và f(xo)>f(x),x (a,b){xo}.

24 tháng 6 2018

Đáp án A

Mệnh đề 1) sai vì f ' x 0 = 0  chỉ là điều kiện cần chưa là điều kiện đủ để hàm số đạt cực trị tại  x 0  

Mệnh đề 2) Sai vì khi    f ' x 0 = f ' ' x 0 = 0 có thể hàm số có thể đạt cực trị hoặc không đạt cực trị tại  x 0 .

Mệnh đề 3) sai vì f ' x  đổi dấu qua điểm  x 0  thì điểm  x 0  có thể là điểm cực đại hoặc điểm  cực tiểu của hàm số.

Mệnh đề 4) Sai vì trong trường hợp này x 0  là điểm cực tiểu của đồ thị hàm số.

6 tháng 3 2017

Đáp án A

A sai vì hàm số y = x 3  có y ' 0 = 0  nhưng không đạt cực trị tại x = 0

B sai vì hàm số y = x 4 có y ' 0 = 0 , y ' ' 0 = 0 đạo hàm và có đạo hàm cấp hai tại điểm  x 0  thoả mãn điều kiện f ' x 0 = f ' ' x 0 = 0  thì điểm  x 0 nhưng không đạt cực trị tại x = 0

C sai vì “Nếu f ' x  đổi dấu khi x qua  x 0  thì điểm  x 0  là điểm trị (cực đại và cực tiểu) của hàm số  y = f ' ' x

D sai vì “Nếu hàm số y = f x có đạo hàm và có đạo hàm cấp hai tại điểm  x 0 thoả mãn điều kiện f ' x 0 = 0 ; f ' ' x 0 > 0  thì điểm x 0 là điểm cực đại của hàm số  y = f ' ' x

6 tháng 10 2015

ta  tính \(y'=6x^2+a-12\)

để hàm số vừa có cực đại và cực tiểu thì \(y'=0\) hai nghiệm phân biệt suy ra \(6x^2+a-12=0\Leftrightarrow6x^2=12-a\) (*)

để (*) có 2 nghiệm phân biệt thì \(12-a>0\Leftrightarrow a<12\)

vậy với a<12 thì hàm số có cực đại và cực tiểu

gọi \(x_1;x_2\) là cực đại và cực tiểu của hàm số

suy ra \(x_{1,2}=\pm\sqrt{\frac{12-a}{6}}\) ta thay vào hàm số suy ra đc \(y_{1,2}\) suy ra \(I\left(x_1;y_1\right);A\left(x_2;y_2\right)\)

sử dụng công thức tính khoảng cách

pt đường thẳng y có dạng x=0

ta có \(d\left(I;y\right)=\frac{\left|x_1\right|}{\sqrt{1}}\)\(d\left(A;y\right)=\frac{\left|x_2\right|}{\sqrt{1}}\)

\(d\left(I,y\right)=d\left(A,y\right)\) giải pt ta tìm ra đc a

30 tháng 3 2018

Chọn C

28 tháng 12 2017

Đáp án B

17 tháng 8 2017

Đáp án D

Hàm số  y = f ( x )  đạt cực tiểu tại x 0 = 0  

Hàm số  y = f ( x )  có ba điểm cực trị.

Phương trình  f ( x ) = 0  có 4 nghiệm phân biệt

Hàm số đạt giá trị nhỏ nhất là -2 trên đoạn [-2;2]