Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1 : \(x>0\)thì \(2x-1>0\)
\(2x>1\Rightarrow x>\frac{1}{2}\left(Tm\right)\)
TH2 : \(x< 0\)thì \(2x-1< 0\)
\(2x< 1\Rightarrow x< \frac{1}{2}\)kết hợp với ĐK \(\Rightarrow x< 0\)
Ta có: \(3x=4y=5z\) => \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\) => \(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{5}}=\frac{2x+y-z}{\frac{2}{3}+\frac{1}{4}-\frac{1}{5}}=\frac{43}{\frac{43}{60}}=60\)
=> \(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=60\\\frac{y}{\frac{1}{4}}=60\\\frac{z}{\frac{1}{5}}=60\end{cases}}\) => \(\hept{\begin{cases}x=60\cdot\frac{1}{3}=20\\y=60\cdot\frac{1}{4}=15\\z=60\cdot\frac{1}{5}=12\end{cases}}\)
Vậy ...
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
\(x^2=3^y+35\)
Với \(y=0\) ta có: \(x^2=36\Rightarrow x=6\left(x\ge0\right)\)
Với \(y>0\) ta có: \(3^y⋮3\Rightarrow3^y+33+2\) chia 3 dư 2
\(\Rightarrow x^2=3k+2\).Mà số chính phg ko có dạng 3k+2
Vậy pt có nghiệm (x;y)=(6;0)
\(\left(2x-1\right)^3=\dfrac{8}{125}\)
\(\left(2x-1\right)^3=\pm\left(\dfrac{2}{5}\right)^3\)
\(\text{Vậy }2x-1=\dfrac{2}{5}\)
\(2x\) \(=\dfrac{2}{5}+1=\dfrac{7}{5}\)
\(x\) \(=\dfrac{7}{5}.\dfrac{1}{2}=\dfrac{7}{10}\)
\(\text{hoặc }2x-1=\dfrac{-2}{5}\)
\(2x\) \(=\left(\dfrac{-2}{5}\right)+1=\dfrac{3}{5}\)
\(x\) \(=\dfrac{3}{5}.\dfrac{1}{2}=\dfrac{3}{10}\)
\(\Rightarrow x\in\left\{\dfrac{7}{10};\dfrac{3}{10}\right\}\)