Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
x + y + y +z + z + x = \(-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}=-\frac{5}{6}\)
=> 2 ( x + y +z )= \(-\frac{5}{6}\)
=> x + y + z = \(-\frac{5}{6}:2=-\frac{5}{6}\cdot\frac{1}{2}=-\frac{5}{12}\)
=> z = ( x + y +z ) - ( x + y) = \(-\frac{5}{12}-\left(-\frac{7}{6}\right)=-\frac{5}{12}+\frac{7}{6}=\frac{3}{4}\)
Tìm y ; x tương tự
Câu 1 :
\(a,2\left(\frac{3}{4}-5x\right)=\frac{4}{5}-3x\)
\(\Rightarrow\frac{3}{2}-10x=\frac{4}{5}-3x\)
\(\Rightarrow7x=\frac{3}{2}-\frac{4}{5}\)
\(\Rightarrow7x=\frac{7}{10}\)\(\Leftrightarrow x=0,1\)
\(b,\frac{3}{2}-4\left(\frac{1}{4}-x\right)=\frac{2}{3}-7x\)
\(\Rightarrow\frac{3}{2}-1+4x=\frac{2}{3}-7x\)
\(\Rightarrow11x=\frac{2}{3}+1-\frac{3}{2}\)
\(\Rightarrow11x=\frac{4+6-9}{6}-\frac{1}{6}\)
\(\Rightarrow x=\frac{1}{66}\)
Câu 2 :
\(a,\frac{2}{x-1}< 0\)
Vì \(2>0\Rightarrow\)để \(\frac{2}{x-1}< 0\)thì \(x-1< 0\Leftrightarrow x< 1\)
\(b,\frac{-5}{x-1}< 0\)
Vì \(-5< 0\)\(\Rightarrow\)để \(\frac{-5}{x-1}< 0\)thì \(x-1>0\Rightarrow x>1\)
\(c,\frac{7}{x-6}>0\)
Vì \(7>0\Rightarrow\)để \(\frac{7}{x-6}>0\)thì \(x-6>0\Rightarrow x>6\)
a) \(\left|1-2x\right|>7\)
<=> \(\orbr{\begin{cases}1-2x>7\\1-2x< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< -3\\x>4\end{cases}}\)
b) Lập bảng:
x+2 -2 4-x x-2 4 2 1 (x-1)^2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 + - + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - + + +
Ta có: (x-2)(x+2)(4-x)(x-1)2 \(\le\)0
<=> \(\orbr{\begin{cases}-2\le x\le2\\x\ge4\end{cases}}\)
a) 3/4+1/4:x =-3
=> 1/4:x = -3 - 3/4 = -15/4
=> x = 1/4 : (-15/4)
=> x= -1/15
b) |3x-5|-7 = -3
=> |3x-5| = 4
=> 3x-5 = 4 hoac -4
=> x = 3 hoac 1/3
\(\frac{x+1}{29}+\frac{x+4}{13}=\frac{x+9}{7}\)
\(\Leftrightarrow\frac{x+1}{29}+1+\frac{x+4}{13}+2=\frac{x+9}{7}+3\)
\(\Leftrightarrow\frac{x+30}{29}+\frac{x+30}{13}=\frac{x+30}{7}\)
\(\Leftrightarrow\frac{x+30}{29}+\frac{x+30}{13}-\frac{x+30}{7}=0\)
\(\Leftrightarrow\left(x+30\right)\left(\frac{1}{29}+\frac{1}{13}-\frac{1}{7}\right)=0\)
\(\Leftrightarrow x+30=0\)( vì \(\frac{1}{29}+\frac{1}{13}-\frac{1}{7}\ne0\))
\(\Leftrightarrow x=-30\)
Vậy...
\(\frac{x+1}{29}+\frac{x+4}{13}=\frac{x+9}{7}\)
\(\Leftrightarrow\frac{x+1}{29}+1+\frac{x+4}{13}+2=\frac{x+9}{7}+3\)
\(\Leftrightarrow\frac{x+30}{29}+\frac{x+30}{13}=\frac{x+30}{7}\)
\(\Leftrightarrow\frac{x+30}{29}+\frac{x+30}{13}-\frac{x+30}{7}=0\)
\(\Leftrightarrow\left(x+30\right)\left(\frac{1}{29}+\frac{1}{13}-\frac{1}{7}\right)=0\)
Vì \(\frac{1}{29}+\frac{1}{13}-\frac{1}{7}\ne0\)
Nên \(x+30=0\)
\(\Leftrightarrow x=-30\)
a) \(\left|x+2\right|>7\)
\(\Leftrightarrow\orbr{\begin{cases}x+2>7\\x+2< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>5\\x< -9\end{cases}}\Leftrightarrow5< x< -9\left(ktm\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+2< 7\\x+2>-7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 5\\x>-9\end{cases}}\Leftrightarrow-9< x< 5\left(tm\right)\)
vậy....
v) \(\left|x-1\right|< 3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1< 3\\x-1>-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow-2< x< 4\)
vậy...
\(a,\frac{x-7}{x-11}=\frac{\left(x-11\right)+4}{x-11}=1+\frac{4}{x-11}\)
Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{4}{x-11}< 0\)
\(\Rightarrow x-11< 0\)
\(\Rightarrow x< 11\)
\(2,\frac{x+2}{x-6}=\frac{x-6+8}{x-6}=1+\frac{8}{x-6}\)
Để phân số trên là số hữu tỉ âm \(\frac{\Rightarrow8}{x-6}< 1\Rightarrow x-6>8\Rightarrow x>14\)
\(3,\frac{x-3}{x+7}=\frac{x+7-10}{x+7}=1-\frac{10}{x+7}\)
Để phân số trên là số hữu tỉ âm\(\Rightarrow\frac{10}{x+7}< 1\Rightarrow x+7>10\Rightarrow x>3\)
tìm số hữu tỉ x biết (x - 4/7) : (x + 1/2)
tìm số hữu tỉ x biết (x - 4/7) : (x + 1/2)
x = 0