Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
a, \(\left(x-3\right)\left(x+2\right)>0\)
th1 : \(\hept{\begin{cases}x-3>0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-2\end{cases}\Rightarrow}x>3}\)
th2 : \(\hept{\begin{cases}x-3< 0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -3\end{cases}\Rightarrow}x< -3}\)
vậy x > 3 hoặc x < -3
b, \(\left(x+5\right)\left(x+1\right)< 0\)
th1 : \(\hept{\begin{cases}x+5>0\\x+1< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-5\\x< -1\end{cases}\Rightarrow x\in\left\{-4;-3;-2\right\}}}\)
th2 : \(\hept{\begin{cases}x+5< 0\\x+1>0\end{cases}\Rightarrow\hept{\begin{cases}x< -5\\x>-1\end{cases}\Rightarrow}x\in\varnothing}\)
vậy x = -4; -3; -2
c, \(\frac{x-4}{x+6}\le0\)
xét \(\frac{x-4}{x+6}=0\)
\(\Rightarrow x-4=0;x\ne-6\)
\(\Rightarrow x=4\ne-6\)
xét \(\frac{x-4}{x+5}< 0\)
th1 : \(\hept{\begin{cases}x-4< 0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 4\\x>-5\end{cases}\Rightarrow}x\in\left\{3;2;1;0;-1;-2;-3;-4\right\}}\)
th2 : \(\hept{\begin{cases}x-4>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>4\\x< -5\end{cases}\Rightarrow x\in\varnothing}}\)
d tương tự c
\(\frac{\left(x-6\right)}{x-7}\ge0\)
Th1: x - 6 < 0
<=> x - 6 + 6 < 0 + 6
<=> x - 6 + 6 > 0 + 6
=> x < 6
Th2: x - 7
<=> x - 7 + 7 < 0 + 7
<=> x - 7 + 7 > 0 + 7
=> x > 7
=> x < 6 hoặc x > 7
a) Ta có: x(x-1)<0
\(\Leftrightarrow\)x; x-1 khác dấu
*Trường hợp 1:
\(\left\{{}\begin{matrix}x>0\\x-1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\x< 1\end{matrix}\right.\Leftrightarrow0< x< 1\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}x< 0\\x-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\x>1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy: 0<x<1
b) Ta có: (2-x)(3x-12)>0
\(\Leftrightarrow\)2-x; 3x-12 cùng dấu
*Trường hợp 1:
\(\left\{{}\begin{matrix}2-x>0\\3x-12>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\3x>12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>2\\x>4\end{matrix}\right.\Leftrightarrow x>4\)
*Trường hợp 2:
\(\left\{{}\begin{matrix}2-x< 0\\3x-12< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\3x< 12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 2\\x< 4\end{matrix}\right.\Leftrightarrow x< 2\)
Vậy: 2<x<4
c) Ta có: \(\left(x+1\right)^2\cdot\left(5-2x\right)\le0\)
*Trường hợp 1:
\(\left(x+1\right)^2\cdot\left(5-2x\right)< 0\)
\(\Leftrightarrow\)(x+1)2; 5-2x khác dấu
-Trường hợp 1:
\(\left\{{}\begin{matrix}\left(x+1\right)^2< 0\\5-2x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1< 0\\2x< 5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 1\\x< \frac{5}{2}\end{matrix}\right.\Leftrightarrow x< 1\)
-Trường hợp 2:
\(\left\{{}\begin{matrix}\left(x+1\right)^2>0\\5-2x< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1>0\\2x>5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>\frac{5}{2}\end{matrix}\right.\Leftrightarrow x>\frac{5}{2}\)
Vậy: \(1< x< \frac{5}{2}\)
câu d tương tự nhé bạn
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
\(-2x< 7\Leftrightarrow x>-3,5\)
\(\left(x-1\right)\left(x-2\right)>0\Leftrightarrow x^2-3x+2>0\Leftrightarrow x^2-3x+\frac{9}{4}>\frac{1}{4}\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2>\frac{1}{4}\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}>\frac{1}{2}\\x-\frac{3}{2}< -\frac{1}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>2\\x< 1\end{cases}}\)
cho em xin khái niệm số hữu tỉ r em giải đoàng hoàng ra cho
Trong toán học, số hữu tỉ là các số x có thể biểu diễn dưới dạng phân số (thương) a/b, trong đó a và b là các số nguyên nhưng b{\displaystyle \neq }0. Tập hợp số hữu tỉ ký hiệu là {\displaystyle \mathbb {Q} }.
Một cách tổng quát:
{\displaystyle \mathbb {Q} =\left\{x|x={\frac {m}{n}};m\in \mathbb {Z} ,n\in \mathbb {Z^{*}} \right\}}
Tập hợp số hữu tỉ là tập hợp đếm được.
a/ \(\left|1-2x\right|>7\Leftrightarrow\left[{}\begin{matrix}1-2x=7\\1-2x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x< -6\\2x< 8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -3\\x< 4\end{matrix}\right.\)
b/ \(\dfrac{-5}{x-3}< 0\Leftrightarrow x-3>0\) ( vì -5<0)
\(\Leftrightarrow x>3\)
sao ko trả lời câu c