K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2021

 Bạn kiểm tra lại đề bài, phải là csn lùi vô hạn thì mới tính được

a/  \(S=\dfrac{u_1}{1-q}=32;u_2=u_1.q=8\)

\(\Rightarrow\dfrac{\dfrac{8}{q}}{1-q}=32\Leftrightarrow q=\dfrac{1}{2}\Rightarrow u_1=\dfrac{8}{\dfrac{1}{2}}=16\)

\(\Rightarrow u_n=16.\left(\dfrac{1}{2}\right)^{n-1}=32.\left(\dfrac{1}{2}\right)^n\)

b/ \(S_3=u_1+u_2+u_3=\dfrac{39}{25};S=\dfrac{u_1}{1-q}=\dfrac{5}{3}\)

\(S_3=u_1+u_1.q+u_1q^2=\dfrac{39}{25}\Leftrightarrow u_1\left(1+q+q^2\right)=\dfrac{39}{25}\)

\(\Rightarrow u_1=\dfrac{39}{25\left(1+q+q^2\right)}\Rightarrow\dfrac{\dfrac{39}{25\left(1+q+q^2\right)}}{1-q}=\dfrac{5}{3}\)

\(\Leftrightarrow q=...\Rightarrow u_1=...\Rightarrow u_n=u_1.q^{n-1}\)

P/s: Bạn tự làm nốt ạ

27 tháng 2 2023

Gọi số đầu là x.

Cấp số cộng là q.

=> Số đầu, thứ 2. 3,4,5 là x,x+q,x+2q,x+3q,x+4q.

Tổng số 1 và 3 là x + (x+2q) = 28

Tổng số 3 và cuối là (x+2q)+(x+4q)=40.

Ta đã có 2 phương trình tạo thành 1 hệ phương trình.

Giải hệ tìm x và q.

Chúc em học tốt!

8 tháng 11 2017

Đáp án B

11 tháng 9 2019

Đáp án B

26 tháng 12 2017

Đáp án C

20 tháng 4 2016

Gọi cấp số nhân tăng nghiêm ngặt là \(a_n\). Theo đầu bài ta có \(a_2,a_4\) là 2 nghiệm của phương trình

\(t^2-30t+144=0\Leftrightarrow\begin{cases}t=6\\t=24\end{cases}\)

\(\Leftrightarrow\begin{cases}a_2=6\\a_4=24\end{cases}\) hoặc \(\begin{cases}a_2=24\\a_4=6\end{cases}\)

\(\Leftrightarrow\begin{cases}a_1q=6\\a_1q^3=24\end{cases}\) hoặc \(\begin{cases}a_1q=24\\a_1q^3=6\end{cases}\)

\(\Leftrightarrow\begin{cases}a_1q=6\\q^2=4\end{cases}\)  hoặc \(\begin{cases}a_1q=24\\q^2=\frac{6}{24}=\frac{1}{4}\end{cases}\)

\(\Leftrightarrow\begin{cases}a_1=\frac{6}{\pm2}\\q=\pm2\end{cases}\) hoặc \(\begin{cases}a_1=24\left(\pm2\right)\\q=\pm\frac{1}{2}\end{cases}\)

Do cấp số nhân tăng nghiêm ngặt, nên q>1, do vậy ta chọn \(a_1=3;q=2\)

Cho nên \(S_{10}=u_1\frac{2^{10}-1}{2-1}=3.\left(1024-1\right)=3069\)

21 tháng 2 2017

Giao lưu:

Gọi dãy số đã co có dạng: \(U_1;U_2;U_3;U_4;U_5...U_{10}...U_n\)

đầu bài ta có hệ phương trình.

\(\left\{\begin{matrix}U_n.q=U_{\left(n+1\right)}\left(1\right)\\q>1\left(2\right)\\U_2+U_4=144\left(3\right)\\U_2.U_4=30\left(4\right)\end{matrix}\right.\)

Thế (3) vào (4) \(\Leftrightarrow U_2\left(144-U_2\right)=30\Leftrightarrow U_2^2-144U_4+30=0\Rightarrow\left[\begin{matrix}U_2=24\\U_2=6\end{matrix}\right.\)

Vì U2 và U4 có vai trò như nhau

do vậy có cắp nghiệm là hoán đổi (U2,U4)=(6,24)(*)

Từ (1) và (2) ta có(*)=> \(\left\{\begin{matrix}U_2=6\\U_4=24\end{matrix}\right.\)(**)

Từ (1) ta có: \(U_4=q.U_3=q.\left(q.U_2\right)=q^2.U_2\)(4)

Từ (**) và (4) ta có \(\frac{U_4}{U_2}=q^2=\frac{24}{6}=4\Rightarrow!q!=2\) (5)

Từ (3) và (5) => q=2

Vậy tổng 10 số hạng đầu tiên của dẫy là :\(S_{10}=2^0.3+2^1.3+3.2^2+...+3.2^8+3.2^9=3.\left(1+2+2^2+..+2^9\right)\)

\(S_{10}=3.\left(2^{10}-1\right)\)

30 tháng 12 2019

Chọn A

Gọi u1,u2,u3,u4 là 4 số hạng đầu tiên của cấp số nhân, với công bội q. gọi (vn) là cấp số cộng tương ứng với công sai là d. Theo giả thuyết Ta có:

u 1 + u 2 + u 3 = 16 4 9 u 1 = v 1 u 2 = v 4 = v 1 + 3 d u 3 = v 8 = v 1 + 7 d ⇔ u 1 + u 1 q + u 2 q 2 = 16 4 9    1 u 1 q = u 1 + 3 d                        2 u 1 q 2 = u 1 + 7 d                     3

Khử d từ (2) và (3) ta thu được: 

7 u 1 q = 7 u 1 + 21 d 3 u 1 q 2 = 3 u 1 + 21 d

Lấy vế trừ vế ta thu được 

7 u 1 q − 3 u 1 q 2 = 4 u 1 ⇔ u 1 . 3 q 2 − 7 q + 4 = 0 ⇔ u 1 = 0 3 q 2 − 7 q + 4 = 0

Do  u 1 ≠ 0 ⇒ q = 1 q = 4 3

Theo định nghĩa cấp số nhận thì q ≠ 1 . Do đó  q = 4 3

Thay q = 4 3 vào (1) ta được  u 1 = 4

19 tháng 4 2023

Đáp án là C. Vì:

Gọi d là công bội của dãy cấp số nhân \((u_n) \) 

⇒ \(u_n=d.u_{n-1}=d^2.u_{n-2}=...=d^{n-2}.u_2=d^{n-1}.u_1\)

Suy ra: \(u_5=d^3.u_2 \Rightarrow d^3=\dfrac{u_5}{u_2}=\dfrac{48}{6}=8 \Rightarrow d=2\)

Có: \(u_2=d.u_1 \Leftrightarrow u_1=\dfrac{u_2}{d}=\dfrac{6}{2}=3\)

Theo đề: \(u_1+u_2+...+u_n=381 \)

\(\Leftrightarrow u_1+d.u_1+d^2.u_1+...+d^{n-1}u_1=381\)

\(\Leftrightarrow u_1(1+d+d^2+...+d^{n-1})=381\)

Mặt khác: \(u_1(1+d+d^2+...+d^{n-1})=3.\dfrac{d^n-1}{d-1} =3.\dfrac{2^n-1}{2-1}=3.(2^n-1)\)

\(\Rightarrow 3.(2^n-1)=381 \Leftrightarrow 2^n-1=127 \Leftrightarrow 2^n=128=2^7 \Rightarrow n=7\).

Vậy n = 7 thuộc (6;11)

2 tháng 7 2019

Đáp số: Giải sách bài tập Toán 11 | Giải sbt Toán 11

12 tháng 1 2019

Theo đầu bài ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 1)

Chọn C.