K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2017

a)Câu a sai đề sửa lại: \(\dfrac{1}{5}\) thành \(\dfrac{1}{15}\) thì mới có quy luật nha

Ta có: \(\dfrac{1}{3}=\dfrac{1}{1.3};\dfrac{1}{15}=\dfrac{1}{3.5};\dfrac{1}{35}=\dfrac{1}{5.7};....\)

Gọi số thứ 2017 là \(\dfrac{1}{x.y}\) và x là số thứ nhất ở phần mẫu của số hạng thứ 2017 \(\left(x\in N;x>0\right)\); có:

\(\left(x-1\right):2+1=2017\Rightarrow\left(x-1\right):2=2016\Rightarrow x=4033\)

mà y=x+2=>y=4035

Vậy số thứ 2017 của dãy là \(\dfrac{1}{4033.4035}=\dfrac{1}{16273155}\)

23 tháng 8 2017

b) Ta có:

\(\dfrac{1}{5}=\dfrac{1}{1.5};\dfrac{1}{45}=\dfrac{1}{5.9};\dfrac{1}{117}=\dfrac{1}{9.13};...\)

Gọi số thứ 2017 là \(\dfrac{1}{x.y}\)và x là số thứ nhất ở phần mẫu của số hạng thứ 2017 (x,y∈N;x.y>0); có:

\(\left(x-1\right):4+1=2017\)

Tự tính ra x=8065 mà y=x+4=>y=8069

Vậy số thứ 2017 là \(\dfrac{1}{8065.8069}=\dfrac{1}{65076485}\)

17 tháng 3 2017

Ta thấy mẫu của dãy có dạng 1.5; 5.9; 9.13; 13.17; 17.21;... tổng quát là (4n-3)(4n+1). Mẫu thứ 100 bằng 397.401. Tổng của 100 số hạng đầu của dãy bằng:

\(\left(1-\dfrac{1}{401}\right):4=\dfrac{1}{4}-\dfrac{1}{1604}< \dfrac{1}{4}\)

11 tháng 8 2017

BT1: \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}>\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}>1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{5}{6}\)

Vậy ta suy ra đpcm

11 tháng 8 2017

1. Ta có :

\(\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{6}>\dfrac{1}{6}+\dfrac{1}{6}+.....+\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{6}< \dfrac{1}{6}.5\)

\(\Leftrightarrow\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{6}< \dfrac{5}{6}\)

\(\rightarrowđpcm\)

26 tháng 7 2017

Xuân Tuấn Trịnhvăn tàiNguyen Bao LinĐịnh Quang ( Real )hCold WindKhánh LinhPhương An

13 tháng 8 2023

\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}=\dfrac{x+1}{6}\)

\(\dfrac{x+1}{3}+\dfrac{x+1}{4}+\dfrac{x+1}{5}-\dfrac{x+1}{6}=0\)

\(\left(x+1\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}\right)=0\)

\(\)vì \(\dfrac{1}{3}>\dfrac{1}{6};\dfrac{1}{4}>\dfrac{1}{6};\dfrac{1}{5}>\dfrac{1}{6}=>\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}>0\)

\(=>x+1=0\)

\(=>x=-1\)

b,

\(\dfrac{x+1}{2020}+\dfrac{x+2}{2019}=\dfrac{x+3}{2018}+\dfrac{x+4}{2017}\)

\(\left(\dfrac{x+1}{2020}+1\right)+\left(\dfrac{x+2}{2019}+1\right)=\left(\dfrac{x+3}{2018}+1\right)+\left(\dfrac{x+4}{2017}+1\right)\)

\(\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}=\dfrac{x+2021}{2018}+\dfrac{x+2021}{2017}\)

\(=>\dfrac{x+2021}{2020}+\dfrac{x+2021}{2019}-\dfrac{x+2021}{2018}-\dfrac{x+2021}{2017}=0\)

\(=>\left(x+2021\right)\left(\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}\right)=0\)

Vì \(\dfrac{1}{2020}< \dfrac{1}{2018};\dfrac{1}{2019}< \dfrac{1}{2017}=>\dfrac{1}{2020}+\dfrac{1}{2019}-\dfrac{1}{2018}-\dfrac{1}{2017}< 0\)

\(=>x+2021=0\)

\(=>x=-2021\)

 

c,

\(\dfrac{x+2}{327}+\dfrac{x+3}{326}+\dfrac{x+4}{325}+\dfrac{x+5}{324}+\dfrac{x+349}{5}=0\)

\(\left(\dfrac{x+2}{327}+1\right)+\left(\dfrac{x+3}{326}+1\right)+\left(\dfrac{x+4}{325}+1\right)+\left(\dfrac{x+5}{324}+1\right)+\left(\dfrac{x+349}{5}-4\right)=0\)

\(\dfrac{x+329}{327}+\dfrac{x+329}{326}+\dfrac{x+329}{325}+\dfrac{x+329}{324}+\dfrac{x+329}{5}=0\)

\(=>\left(x+329\right)\left(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}\right)=0\)

Vì \(\dfrac{1}{327}+\dfrac{1}{326}+\dfrac{1}{325}+\dfrac{1}{324}+\dfrac{1}{5}>0\)

\(=>x+329=0\)

\(=>x=-329\)

a:=>0,75x-x+1,25x=0,2

=>x=0,2

b: =>1/3-x=-3/6+4/6=1/6

=>x=1/3-1/6=1/6

c: =>(x-1)/45=-6/30=-1/5

=>x-1=-9

=>x=-8

d: =>(2/5x-1)=-5/7

=>2/5x=2/7

=>x=5/7

1 tháng 8 2017

c) E = \(\dfrac{4116-14}{10290-35}\) và K = \(\dfrac{2929-101}{2.1919+404}\)

E = \(\dfrac{4116-14}{10290-35}\)

E = \(\dfrac{14.\left(294-1\right)}{35.\left(294-1\right)}\)

E = \(\dfrac{14}{35}\)

K = \(\dfrac{2929-101}{2.1919+404}\)

K = \(\dfrac{101.\left(29-1\right)}{101.\left(38+4\right)}\)

K = \(\dfrac{29-1}{34+8}\)

K = \(\dfrac{28}{42}\) = \(\dfrac{2}{3}\)

Ta có : E = \(\dfrac{14}{35}\) và K = \(\dfrac{2}{3}\)

\(\dfrac{14}{35}\) = \(\dfrac{42}{105}\)

\(\dfrac{2}{3}\) = \(\dfrac{70}{105}\)

Vậy E < K

Các câu còn lại tương tự

5 tháng 3 2023

B