K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2019

\(A=1+3+3^2+3^3+3^4+3^5+.....+3^{2017}\)

\(=1+3+\left(3^2+3^3+3^4+3^5\right)+.....+\left(3^{2014}+3^{2015}+3^{2016}+3^{2017}\right)\)

\(=4+3^2\left(1+3+3^2+3^3\right)+.....+3^{2014}\left(1+3+3^2+3^3\right)\)

\(=4+3^2\cdot40+....+3^{2014}\cdot40\)

\(=4+40\left(3^2+.....+3^{2014}\right)\) chia 40 dư 4.

20 tháng 5 2019

\(\frac{3-x}{2016}-1=\frac{2-x}{2017}+\frac{1-x}{2018}\)

\(\Rightarrow\frac{3-x}{2016}-1+2=\frac{2-x}{2017}+\frac{1-x}{2018}+2\)(thêm 2 vô mỗi vế)

\(\Rightarrow\frac{3-x}{2016}+1=\left(\frac{2-x}{2017}+1\right)+\left(\frac{1-x}{2018}+1\right)\)

\(\Rightarrow\frac{2019-x}{2016}=\frac{2019-x}{2017}+\frac{2019-x}{2018}\)

\(\Rightarrow\left(2019-x\right)\cdot\frac{1}{2016}=\left(2019-x\right)\left(\frac{1}{2017}+\frac{1}{2018}\right)\)

\(\Rightarrow2019-x=0\)

\(\Rightarrow x=2019\)

1992 đồng dư với 4 (mod 7)

\(1992^3\) đồng dư với 1 (mod 7)

=> \(\left(1992^3\right)^{664}\)đồng dư với \(1^{664}\) và đồng dư với 1 (mod 7)

1994 đồng dư với 6 (mod 7)

\(1994^2\) đồng dư với 1 (mod 7)

=> \(\left(1994^2\right)^{997}\)đồng dư với \(1^{997}\) và đồng dư với 1 (mod 7)

\(1992^{1993}+1994^{1995}\)

\(=1992.\left(1992^3\right)^{664}+1994.\left(1994^2\right)^{997}\)

\(=4.1+6.1=24\)

Vậy số dư là 24

22 tháng 1 2018

Vấn đề Nguyệt muốn hỏi là tại sao tự dưng bạn phía trên lại có thể làm ra như vậy khi số dư 24 lớn hơn số chia ~ :) 

4 tháng 7 2015

lấy máy tính tự chia nhá

AH
Akai Haruma
Giáo viên
22 tháng 4 2023

Lời giải:
$10\equiv 1\pmod 9\Rightarrow 10^{1989}\equiv 1^{1989}\equiv 1\pmod 9$
$28\equiv 1\pmod 9\Rightarrow 28^{2000}\equiv 1^{2000}\equiv 1\pmod 9$

$3^{2020}=9^{1010}\equiv 0\pmod 9$

Do đó: $10^{1989}+28^{2000}+3^{2020}\equiv 1+1+0\equiv 2\pmod 9$

22 tháng 4 2023

mod là gì ạ