K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

Gọi số cần tìm là a.

Vì a chia 7 dư 5 nên \(\left(a+9\right)⋮7\)

Vì a chia 13 dư 4 nên \(\left(a+9\right)⋮13\)

\(\Rightarrow a+9\in BC\left(7,13\right)\)

Ta có: \(\left[7,13\right]=7.13=91\)

\(\Rightarrow a+9\in B\left(91\right)\Leftrightarrow a+9=91k\)

\(\Leftrightarrow a=91k-9\)

\(\Leftrightarrow a=91\left(k-1\right)+82\)

Vậy số đó chia 91 dư 82.

14 tháng 4 2019

cám ơn bạn nhiều

11 tháng 12 2017

gọi số đó là a

ta có a chia 7 dư 5 và a chia 13 dư 4

suy ra a-5 chia hết cho 7 và a-4 chia hết cho 13

suy ra a-5+14 chia hết cho7 và a-4+13 chia hết cho 13

suy ra a+9 chia hết cho 7 và a+9 chia hết cho 13

suy ra a+9 thuộc bội chung của 7 và 13 suy ra a+9 chia hết cho bội chung nhỏ nhất của 7 và 13

suy ra a+9 chia hết cho 91 suy ra a+9-91 chia hết cho 91

suy ra a-82 chia hết cho 91 suy ra a chia 91 dư 82

14 tháng 3 2018

gọi số tự nhiên đó là a.

theo bài ra ta có :

a = 7t + 5 (t thuộc N)

a=13k + 4 (k thuộc N)

do đó:

a+9 = (7t + 5) + 9 = 7t + 14 (chia hết cho 7)

a+9 = (13k + 4) + 9 = 13k + 13 (chia hết cho 13)

Mà 7 và 13 nguyên tố cùng nhau nên a+9 chia hết cho 7.13 = 91

Vậy: a+9 chia hết cho 91, suy ra a chia cho 91 có số dư là 91 - 9 = 82

19 tháng 7 2016

Theo đề bài ta có: 
a : 7 (dư 5) 
a : 13 (dư 4) 
=> a + 9 chia hết cho 7 và 13. 
7 và 13 đều là số nguyên tố => a + 9 chia hết cho 7 x 13 = 91. 
=> a chia cho 91 dư 91-9 = 82. 
Vậy số tự nhiên đó chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem chia số đó cho 91 dư 82. 
Các bạn ơi mình ko hiểu cách giải tí nào luôn ý, giảng cho mình cái chỗ sao lại ra a + 9 chia hết cho 7 và 13. 
7 và 13 đều là số nguyên tố => a + 9 chia hết cho 7 x 13 = 91. 
=> a chia cho 91 dư 91-9 = 82.  

Bài 14: Gọi số cần tìm là x

x chia 5 dư 3

=>x-3⋮5

=>x-3+5⋮5

=>x+2⋮5(1)

x chia 7 dư 5

=>x-5⋮7

=>x-5+7⋮7

=>x+2⋮7(2)

Từ (1),(2) suy ra x+2∈BC(5;7)

mà x nhỏ nhất

nên x+2=BCNN(5;7)

=>x+2=35

=>x=33

Vậy: Số cần tìm là 33

Bài 13: Gọi số cần tìm có dạng là \(\overline{ab}\)

Nếu lấy số đó chia cho tổng các chữ số của nó thì được thương là 3, dư là 5

=>\(\overline{ab}=3\cdot\left(a+b\right)+5\)

=>10a+b=3a+3b+5

=>7a-2b=5

=>(a;b)∈{(1;1);(3;8)}

Thử lại, ta thấy a=3;b=8 thỏa mãn

vậy: Số cần tìm là 38

27 tháng 12 2018

a:7(dư 5)

a:13(dư 4)

=>a+9 chia hết cho 7 và 13

7 và 13 đều là số nguyên tố=>a+9 chia hết cho 7.13=91

=>a chia cho 91 dư 91-9=82

Vậy số tự nhiên đó chia cho 7 dư 5, chia cho 13 dư 4. Nếu đem chia số đó cho 91 dư 82

14 tháng 8 2017

B=13

C=14

D=83

A=118

14 tháng 8 2017

+)b=(64-12)/4=13

+)c=(83-13)/5=13

+)b=14*5+13=83

+)a=17*6+16=118