Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi chia cho đa thức bậc 2 thì dư tối đa là bậc 1, giả sử đó là \(ax+b\)
\(\Rightarrow x^{2019}+x^{2018}+x+2018=\left(x^2-1\right).P\left(x\right)+ax+b\)
Trong đó \(P\left(x\right)\) là đa thức thương (ko cần quan tâm)
Thay lần lượt \(x=-1\) và \(x=1\) vào ta được:
\(\left\{{}\begin{matrix}2017=-a+b\\2021=a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=2019\end{matrix}\right.\)
Đa thức dư là \(2x+2019\)
Lời giải:
Vì $x^2-1$ là đa thức bậc 2 nên đa thức dư khi chia $x^{2019}+x^{2018}+x+2018$ cho $x^2-1$ phải có bậc nhỏ hơn 2.
Đặt đa thức dư cần tìm là $ax+b$
Ta có:
\(x^{2019}+x^{2018}+x+2018=Q(x)(x^2-1)+ax+b\) với $Q(x)$ là đa thức thương
Lần lượt thay $x=1,x=-1$ ta có:
\(\left\{\begin{matrix} 2021=a+b\\ 2017=-a+b\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=2\\ b=2019\end{matrix}\right.\)
Vậy đa thức dư là $2x+2019$
3x3+10x2-5 chia hết cho 3x-1
<=> 3x3-3x3-x2+10x2-5 chia hết cho 3x+1
<=> 9x2-5 chia hết cho 3x+1
<=> 9x2-(9x2+3x)-5 chia hết cho 3x+1
<=> 3x-5 chia hết cho 3x+1
<=> 6 chia hết cho 3x+1 <=> 3x+1 E Ư(6)
Vì 3x+1 chia 3 dư 1
<=> 3x+1 E {1;-2}
<=> 3x E {0;-3} <=> x E {0;-1}