K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LT
0
VN
0
NB
1
3 tháng 6 2015
bài này ta làm như sau " chủ yếu là bấm máy thôi"
2006 đồng dư với 26 (mod 33)
200612 đồng dư với 2612 (mod 33)
262 đòng dư với 16(mod 33)
=> (262)6 đồng dư với 166 (mod 33) mà 166 đồng dư với 16 (mod 33)
vậy số dư của phép chia 200612 cho 33
NT
0
HV
1
19 tháng 3 2020
Ta có: \(A=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+2028\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+2028\)
Đặt: \(x^2+8x+12=t\) ta có: \(x^2+8x+7=t-5\) và \(x^2+8x+15=t+3\)
Ta có: \(A=\left(t+3\right)\left(t-5\right)+2028=t^2-2t+2013\)chia t dư 2013
Vậy A chia x2 + 8x + 12 dư 2013
8 tháng 11 2021
Bài 1:
\(=\dfrac{x^3-x^2+x+3}{x+1}\)
\(=\dfrac{x^3+x^2-2x^2-2x+3x+3}{x+1}\)
\(=x^2-2x+3\)
Ta có :
\(5^{70}=\left(5^2\right)^{35}=25^{35}=\left(12.2+1\right)^{35}\equiv1\left(mod12\right)\)
\(7^{70}=\left(7^2\right)^{35}=49^{35}=\left(12.4+1\right)^{35}\equiv1\left(mod12\right)\)
\(\Rightarrow5^{70}+7^{50}\equiv2\left(mod12\right)\) hay \(5^{70}+7^{50}\) chia 12 dư 2