K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2016

\(3^{2016}\equiv1^{2016}\)

mà \(1^{2016}\)chia 13 dư 1

nên 3^2016 : 13 dư 1

26 tháng 1 2018

lớp 8 thì chịu

26 tháng 1 2018

xin lỗi bạn nha ,số to quá mk ko chia đc

26 tháng 1 2018

Có : 3^2003 = 3^2001.3^2 = (3^3)^667.9 = 27^667.9 = 27^667.9-9+9=9.(27^667-1)+9

Ta thấy 27^667-1 = 27^667-1^667 chia hết cho 27-1=26

=> 27^667-1 chia hết cho 13

=> 3^2003 chia 13 dư 9

Tk mk nha

24 tháng 3 2017

ta có A = 1! + 2! + 3! + ... + 2015!

           = (...0)

1 tháng 2 2018

Có : 3^2003 = (3^2001).3^2 = (3^3)^667.9 = 27^667 . 9

Áp dụng tính chất a^n-b^n chia hết cho a-b với a,b,n thuộc N sao thì :

27^667.9 - 9 = 9.(27^667-1) = 9.(27^667-1^667) chia hết cho 27-1 = 26

Mà 26 chia hết cho 13 => 27^667.9-9 chia hết cho 13

=> 3^2003-9 chia hết cho 13

=> 3^2003 chia 13 dư 9

Tk mk nha

NM
11 tháng 9 2021

ta có : \(13\text{ chia 4 dư 1 nên }13^{16}=4k+1\text{ nên}\)

\(3^{13^{14}}=3^{4k+1}=3.81^k\text{ mà 81 chia 16 dư 1 nên : }3.81^k\text{ chia 16 dư 3}\)

vậy \(3^{13^{16}}\text{ chia 16 dư 3}\)

b.\(20\text{ chia 3 dư 2 nên }20^{21}\text{ chia 3 dư 2 nên : }20^{21}=3k+2\)

\(\Rightarrow4^{20^{21}}=4^{3k+2}=16\times64^k\) 

mà \(64^k\text{ chia 21 dư 1 nên }4^{20^{21}}\text{ chia 21 dư 16}\)

17 tháng 7 2018

gọi Q(x) là thương và ax+b là số dư của phép chia trên. ta có:

\(x+x^3+x^9+x^{27}+x^{81}=\left(x^2-1\right).Q\left(x\right)+ax+b\)

với x = 1 thì: a + b = 5 (1)

với x = -1 thì: -a + b = -5 (2)

từ (1); (2) => b = 0; a = 5

=> số dư của phép chia là 5x

17 tháng 7 2018

Gọi Q(x) là thương và ax + b là số dư của phép chia trên, ta có:

x + x+ x+ x27 + x81 = (x- 1) . Q(x) + ax + b

Với x = 1 thì a + b = 5(1)

Với x = -1 thì -a + b = -5(2)

Từ (1) : (2) => a = 5; b = 0

=> Số dư phép chia là: 5x

28 tháng 7 2023

\(38^{10}=\left(39-1\right)^{10}\)

 Ta đều biết rằng biểu thức này sẽ có dạng \(39P+1\) (nếu muốn viết đầy đủ thì phải dùng khai triển Newton) và vì \(13|39\) nên biểu thức trên cũng có thể được viết dưới dạng \(13Q+1\) (với \(Q=3P\)). Do đó \(38^{10}\) chia 13 dư 1.

 Ta làm tương tự: \(38^9=\left(39-1\right)^9=13R-1\) nên lúc này \(38^9\) chia 13 dư 12.

 

28 tháng 7 2023

mik chx học cái đó :<