Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số tự nhiên đó là a.
theo bài ra ta có :
a = 7t + 5 (t thuộc N)
a=13k + 4 (k thuộc N)
do đó:
a+9 = (7t + 5) + 9 = 7t + 14 (chia hết cho 7)
a+9 = (13k + 4) + 9 = 13k + 13 (chia hết cho 13)
Mà 7 và 13 nguyên tố cùng nhau nên a+9 chia hết cho 7.13 = 91
Vậy: a+9 chia hết cho 91, suy ra a chia cho 91 có số dư là 91 - 9 = 82
a: =>(x-1)^2=1 và 5y^2=5
=>(x-1)^2=1 và y^2=1
=>\(y\in\left\{1;-1\right\};x\in\left\{2;0\right\}\)
b: Gọi số cần tìm là x
x chia 11 dư 4 nên x-4 chia hết cho 11
=>x+18 chia hết cho 11
x chia 13 dư 8
=>x-8 chia hết cho 13
=>x+18 chia hết cho 13
=>x+18 chia hết cho 143
=>x chia 143 dư 18
B=3+3²+3³+..... +3¹00
B=3²+3³+3⁴+... 3¹00+3
B=3²(1+3+3²) +... +3 98(1+3+3²) +3
B=3²•13+... +3 98•13+3
=) 3²•13+3 98•13 chia hết cho 13
=) Số dư là 3
gọi số đó là a
ta có a chia 7 dư 5 và a chia 13 dư 4
suy ra a-5 chia hết cho 7 và a-4 chia hết cho 13
suy ra a-5+14 chia hết cho7 và a-4+13 chia hết cho 13
suy ra a+9 chia hết cho 7 và a+9 chia hết cho 13
suy ra a+9 thuộc bội chung của 7 và 13 suy ra a+9 chia hết cho bội chung nhỏ nhất của 7 và 13
suy ra a+9 chia hết cho 91 suy ra a+9-91 chia hết cho 91
suy ra a-82 chia hết cho 91 suy ra a chia 91 dư 82
Em học đồng dư thức chưa
Học r thì dùng đồng dư nhé ( ko bt đánh dấu đồng dư nên viết tắt là dd nhé )
2135 dd 3 ( mod 13 ) => 213597 dd 397 ( mod 13)
Lại có 397 = (33)32.3 mà 33 = 27 dd 1 (mod 13) => (33)32 dd 1 (mod 13) => 397 dd 3 ( mod 13)