Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) 1546 có 1 + 5 + 4 + 6 =16. 16 chia 3 dư 1, chia 9 dư 7.
Do đó 1546 chia 3 dư 1, chia 9 dư 7.
+) 1527 có 1 + 5 + 2 + 7 = 15. Ta thấy 15 chia 9 thư 6 và 15 chia 3 dư 0 nên 1527 chia 9 dư 6, chia hết cho 3.
+) 2468 có 2 + 4 + 6 + 8 = 20. 20 chia 9 dư 2, chia 3 dư 2.
Do đó 2468 chia 3, chia 9 đều dư 2.
+) có tổng các chữ số bằng 1. 1 chia 3 và 9 đều dư 1.
Do đó 1011 chia 3, chia 9 đều dư 1.
Ta có:
+) a chia hết cho b được thương là q thì a = b.q
+) Nếu a chia cho b được thương là dư r thì a = b.q + r
=> a - r = b.q => a - r chia hết cho b
Hoặc a + (b - r) = bq + r + (b - r) => a + (b - r) = bq + b = b(q+1) => a + (b - r) chia hết cho b
Ví dụ: a chia cho 5 dư 2 => a - 2 chia hết cho 5 hoặc a + 3 chia hết cho 5
gọi số cần tìm là a
ta có :
a chia 5 dư 2 chia 7 dư 4 chia 9 dư 6
=>a+3 chia hết cho 5;7;9
Vì a chia 5 dư 2=>a-2 chia hết cho 5=>a-2+5 chia hết cho 5=>a+3 chia hết cho 5
a chia 7 dư 4 =>a-4 chia hết cho 7 =>a-4+7 chia hết cho 7=>a+3 chia hết cho 7
a chia 9 dư 6 =>a-6 chia hết cho 9=>a-6+9 chia hết cho 9=>a+3 chia hết cho 9
nên lấy a+3 để xét BC của 5;7;9
....
Gọi số cần tìm là a
thương khi số đó chia 7 là b
Theo đề,ta có:a=7b+4
a=9(b-2)+8
=>7b+4=9b-10=>b=7
=>a=53
Vậy số cần tìm là 53
a chia 6 dư 5 nên a + 1 chia hết cho 6
a chia 5 dư 4 nên a + 1 chia hết cho 5
a chia 4 dư 3 nên a + 1 chia hết cho 4
a chia 3 dư 2 nên a + 1 chia hết cho 3
a chia hết 10 dư 9 nên a+1 chia hết cho 10
Vậy a + 1 là một số chia hết cho 5; 4; 3; 2,10 mà số nhỏ nhất chia hết cho 5; 4; 3; 2 ;9 là 60 nên:
a + 1 = 60
a = 60 - 1
a = 59
Số cần tìm là 59
Giải :
Vì x : 3 dư 2 => x + 1 ⋮ 3
x : 4 dư 3 => x + 1 ⋮ 4
x : 5 dư 4 => x + 1 ⋮ 5
x : 10 dư 9 => x + 1 ⋮ 10
Mà x nhỏ nhất => x ∈ BCNN( 3 ; 4 ; 5 ; 10 )
3 = 3 ; 4 = 22 ; 5 = 5 ; 10 = 2.5 => BCNN ( 3 ; 4 ; 5 ; 10 ) = 3.22.5 = 180
=> x + 1 = 180 => x = 180 - 1 => x = 179
Vậy x = 179
Gọi x và y lần lượt là thương của các phép chia a cho 4 và chia a cho 9. (b,c là số tự nhiên)
Ta có: a = 4x + 3 => 27a = 108x + 81 (1)
a = 9y + 5 => 28a = 252y + 140 (2) (Cùng nhân với 28)
Lấy (2) trừ (1) ta được: 28a - 27a = 36.(7c - 3b) + 59
\(\Leftrightarrow\) a = 36. (7c - 3b + 1) + 23
Vậy a chia cho 36 dư 23.
- Ta có : a chia 4 dư 3 `=> a=4k+3 (k in NN)`
- Ta lại có : a chia 9 dư 5 `=> a-5vdots9`
`=> 4k+3-5vdots9`
`=> 4k-2vdots9`
`=> 4k-2-18 vdots9`
`=> 4k-20vdots9`
`=> 4(k-5)vdots9`
mà (4;5)=1
`=> k-5vdots9`
`=> k-5=9m (m in NN)`
`=> k=9m+5`
- Thay `k=9m+5` vào biểu thức `a=4k+3` ta có :
`a=4.(9m+5)+3`
`-> a=36m+20+3`
`-> a=36m+23`
- Vậy a chia 36 dư 23
1011 : 9 dư 1
1011 : 3 dư 1