K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2016

dễ mà bài này quá dễ

17 tháng 9 2016

Phan Văn Hiếu:làm đi trước khi nói

19 tháng 6 2019

giai lai

\(506^{80}\equiv2^{80}\equiv0\left(\text{mod }4\right)\)

Đặt \(506^{80}=4k\left(k\inℕ^∗\right)\)

\(\Rightarrow3^{506^{80}}=3^{4k}\)

Ta có:

\(3^{4k}⋮3\left(k\inℕ^∗\right)\Rightarrow3^{4k}-6⋮3\)(1)

\(3^4\equiv1\left(mod5\right)\Rightarrow3^{4k}\equiv1\left(mod5\right)\Rightarrow3^{4k}-1-5⋮5\)

\(\Rightarrow3^{4k}-6⋮5\)(2)

Từ (1) và (2) => 34k chia hết cho 15 vì (3,5)=1

Vậy...

19 tháng 6 2019

nhầm dòng gần cuối 34k-6 :(( 

9 tháng 9 2016

a) Ta có :

\(7^{8^9}=7^{2^{27}}=7^{4^{13}}.7\)

\(7^4=2401\text{≡}1\left(mod15\right)\)

\(\Rightarrow7^{4^{13}}.7\text{≡}1^{13}.7\left(mod15\right)\)

\(\Leftrightarrow7^{8^9}\text{≡}1.7\text{≡}7\left(mod15\right)\)

Vậy ...

b) Để tớ hỏi cô tớ chút nhé :(

9 tháng 9 2016

-Dung:để t xem lại cách làm của c câu a) đã,cô t bảo bài đó dài,phải xét tới 9 lần 78 đồng dư với ..(mod15) cơ

27 tháng 9 2016

Đối với những dạng bài tìm số dư của lũy thừa chồng lũy thừa ta sẽ tìm n để \(a^n:b\)dư 1 . Trong bài này a = 7, b = 15.
Dễ dàng nhận thấy: \(7^4:15=160\)dư 1.
Vậy ta sẽ tìm số dư của \(7^7\)khi chia cho 4.
Nhận xét: \(7^2:4=12\)dư 1.
Vậy: \(7^7=7^{2.3+1}=\left(7^2\right)^3.7\).
Do \(7^2\)chia 4 dư 1 và 7 chia cho 4 dư 3 nên. \(\left(7^2\right)^3.7\)chia cho 4 dư \(\left(1\right)^3.3=3.\)
Suy ra: \(7^7=4k+3,\)k là số nguyên dương.
Ta có: \(7^{7^7}=7^{4k+3}=\left(7^4\right)^k.7^3.\)
Nhận xét: \(\left(7^4\right)^k\)chia 15 dư 1; \(7^3=343\) chia 15 dư 13. 
Vậy: \(7^{7^7}\)chia 15 dư 1. 13 = 13.

27 tháng 9 2016

I am ateachear I can kill you,k me

31 tháng 7 2016

Ta có  :

15 : n dư 5 suy ra 10 chia hết cho n , n > 5

17 : n dư 7 suy ra 10 chia hết cho n , n > 7 

vậy n là ƯC ( 10 ) , ta có :

10 = 2.5 

Suy ra ta có ƯCNN của ( 15 , 17 ) là :

2.5 = 10 

Vậy n = 10 

Chúc bạn học tốt

1 tháng 7 2017

Gọi thương trong phét chia của P(x) cho x - 2 và x - 3 lần lượt là Q(x) , G(x) 

Ta có : P(x) = (x - 2).Q(x) + 5 với mọi x (1)

           P(x) = (x - 3).G(x) + 7 với mọi x (2)

Khi chia đa thức P(x) cho đa thức bậc hai (x - 2)(x - 3) thì số dư chỉ có thể có rạng R(x) = ax + b

Ta có : P(x) = (x - 2)(x - 3).h(x) + ax + b với mọi x (3)

Thay x = 2 vào (1) ta có : P(2) = 5 , thay vào 3 ta có : P(2) = 2a + b 

Nên 2a + b = 5 (4)

Thay x = 3 vào (2) ta có : P(3) =  7 , thay vào (3) ta có : P(3) = 3a + b 

Nên 3a + b = 7 (5)

Từ (4) và (5) => 3a + b - (2a + b) = 7 - 5 

=> a = 2 => b = 5 - 2.2 = 1

Vậy số dư khi chia P(x) cho (x - 2)(x - 3) là : 2x + 1 

24 tháng 7 2015

bài này trong olimpic tớ bí nè

24 tháng 7 2015

2 tick đúng nha 

 

20 tháng 8 2016

chiu roi

20 tháng 8 2016

bó tay

30 tháng 10 2016

719 + 720 + 721 = 719.(1 + 7 + 72) = 719.57 chia 57 dư 0