Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 3^1998 đồng dư với 0 (mod 3)
và 5 đồng dư với -1 (mod3) => 5^1998 đồng dư với 1 (mod 3) ( vì 1998 chẵn)
=> 3^1998+5^1998 đồng dư với 0+1 (mod 3 ) => đồng dư với 1 ( mod3 )
Vậy 3^1998+5^1998 chia 3 dư 1
Gọi đa thức thương là Q(x) ; đa thức dư là R(x) khi thực hiện phép chia P(x) cho \(x^4\)+\(x^2\)+1 ta viết được : P(x)=Q(x).(\(x^4\)+\(x^2\)+1) + R(x)
=> P(x) - R(x) = Q(x).(\(x^4\)+\(x^2\)+1)
=> R(x) chia cho \(x^2\)+\(x\)+1 có số dư là 1 - x hay R(x) = (ax+b).(\(x^2\)+\(x\)+1)
+1-x
R(x) chia cho \(x^2\)-\(x\)+1 có số dư là 3x-5 hay R(x) = (cx+d).(\(x^2\)-\(x\)+1)
+3x-5
=>(ax+b).(\(x^2\)+\(x\)+1) - (cx+d).(\(x^2\)-\(x\)+1) - 4x-4
<=> \(x^3\)(a-c) + \(x^2\)(a+b+c-d) + \(x\)(a+b-c+d-4) +b-d-4
Áp dụng hệ số bất định ta có:
=>\(\left\{{}\begin{matrix}a-c=0\\a+b+c-d=0\\a+b-c+d-4=0\\b-d-4=0\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}a=c\\a+b=2\\b-d=4\\a+b+c-d=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}a=c\\c-b=2\\b-d=4\\2c+b-d=0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a=c\\b+c=2\\b-d=4\\b+2c-d=0\end{matrix}\right.\)
Giải hệ phương trình ta có:
\(\left\{{}\begin{matrix}a=c=-2\\b=4\\c=-2\\d=0\end{matrix}\right.\)
Vậy R(x) = (-2x+4).(\(x^2\)+\(x\)+1) + 1-x
Vậy đa thúc dư là \(-2x^3\)+\(2x^2\)+x+5
Bước giải hệ phương trình bạn có thể dùng máy tính CSIO 570 ES PLUS
mà giải( Giải ra dài lắm)
bạn tham khảo ở đây nha !!!
https://olm.vn/hoi-dap/detail/98064079856.html
Ta có: \(5^{2000}+5^{1998}=5^{1998}\left(5^2+1\right)=5^{1998}.26\)
Vì \(26⋮13\Rightarrow5^{1998}.26⋮13\)
hay \(5^{2000}+5^{1998}⋮13\)
TK NHOA!!
Ta có :
\(5^{2000}+5^{1998}\)
\(=5^{1998}\times5^2+5^{1998}\)
\(=5^{1998}\times\left(5^2+1\right)\)
\(=5^{1998}\times26\)
\(=5^{1998}\times13\times2\)
Vậy \(5^{2000}+5^{1998}⋮13\)
_Chúc bạn học tốt_
\(3^{1998}+5^{1998}=27^{666}+25^{999}\equiv1^{666}+\left(-1\right)^{999}\equiv1-1\equiv0\left(mod13\right)\)
b, Ta có : \(\frac{x-10}{1994}+\frac{x-8}{1996}+\frac{x-6}{1994}+\frac{x-4}{2000}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2000}{4}+\frac{x-1998}{6}+\frac{x-1996}{8}+\frac{x-1994}{10}\)
=> \(\frac{x-10}{1994}-1+\frac{x-8}{1996}-1+\frac{x-6}{1994}-1+\frac{x-4}{2000}-1+\frac{x-2}{2002}-1=\frac{x-2002}{2}-1+\frac{x-2000}{4}-1+\frac{x-1998}{6}-1+\frac{x-1996}{8}-1+\frac{x-1994}{10}-1\)
=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1994}+\frac{x-2004}{2000}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{4}+\frac{x-2004}{6}+\frac{x-2004}{8}+\frac{x-2004}{10}\)
=> \(\frac{x-2004}{1994}+\frac{x-2004}{1996}+\frac{x-2004}{1994}+\frac{x-2004}{2000}+\frac{x-2004}{2002}-\frac{x-2004}{2}-\frac{x-2004}{4}-\frac{x-2004}{6}-\frac{x-2004}{8}-\frac{x-2004}{10}=0\)
=> \(\left(x-2004\right)\left(\frac{1}{1994}+\frac{1}{1996}+\frac{1}{1998}+\frac{1}{2000}+\frac{1}{2002}-\frac{1}{2}-\frac{1}{4}-\frac{1}{6}-\frac{1}{8}-\frac{1}{10}\right)=0\)
=> \(x-2004=0\)
=> \(x=2004\)
Vậy phương trình có tập nghiệm là \(S=\left\{2004\right\}\)
a) Sửa đề: \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
Ta có: \(\frac{x+1}{35}+\frac{x+3}{33}=\frac{x+5}{31}+\frac{x+7}{29}\)
\(\Leftrightarrow\frac{x+1}{35}+1+\frac{x+3}{33}+1=\frac{x+5}{31}+1+\frac{x+7}{29}+1\)
\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}=\frac{x+36}{31}+\frac{x+36}{29}\)
\(\Leftrightarrow\frac{x+36}{35}+\frac{x+36}{33}-\frac{x+36}{31}-\frac{x+36}{29}=0\)
\(\Leftrightarrow\left(x+36\right)\left(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\right)=0\)
Vì \(\frac{1}{35}+\frac{1}{33}-\frac{1}{31}-\frac{1}{29}\ne0\)
nên x+36=0
hay x=-36
Vậy: x=-36
Ừm. Hình như đề sai. Thử xem sao nhé! Ta có 3^3 đồng dư với 1 (mod 13), Phẩy cái nè!
5^2 đồng dư với -1 (mod13). Chấm cái đã!
=> 3^1998+5^1998= (3^3)^666+(5^2)^999 đồng dư với 1^666+(-1)^999= 1+(-1)=0(mod 13)
=> số dư của 3^1998+5^1998 khi chia cho 13 là 0
Kết luận: Đề không sai :))